Conditionally well-posed and generalized well-posed problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 857-866 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that, for a pair of metric spaces, the operators of abstract conditionally well-posed problems admit extensions that are continuous on the original domain with respect to the ambient space. As a corollary, it is shown that an arbitrary conditionally well-posed problem can be regularized via an operator independent of the error level in the input data. Certain applications to ill-posed operator equations and variational problems are discussed.
@article{ZVMMF_2013_53_6_a2,
     author = {M. Yu. Kokurin},
     title = {Conditionally well-posed and generalized well-posed problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {857--866},
     year = {2013},
     volume = {53},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a2/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - Conditionally well-posed and generalized well-posed problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 857
EP  - 866
VL  - 53
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a2/
LA  - ru
ID  - ZVMMF_2013_53_6_a2
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T Conditionally well-posed and generalized well-posed problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 857-866
%V 53
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a2/
%G ru
%F ZVMMF_2013_53_6_a2
M. Yu. Kokurin. Conditionally well-posed and generalized well-posed problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 857-866. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a2/

[1] Bakushinskii A. B., Goncharskii A. V., Iteratsionnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[2] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[3] Leonov A. S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, LIBROKOM, M., 2010

[4] Kuratovskii K., Topologiya, v. I, Nauka, M., 1966

[5] Vinokurov V. A., “O poryadke pogreshnosti vychisleniya funktsii s priblizhenno zadannym argumentom”, Zh. vychisl. matem. i matem. fiz., 13:5 (1973), 1112–1123 | MR | Zbl

[6] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[7] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR

[8] Burger M., Osher S., “Convergence rates of convex variational regularization”, Inverse Problems, 20:5 (2004), 1411–1421 | DOI | MR | Zbl

[9] Potapov M. M., “O silnoi skhodimosti raznostnykh approksimatsii zadach granichnogo upravleniya i nablyudeniya dlya volnovogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 38:3 (1998), 387–397 | MR | Zbl

[10] Potapov M. M., “Ustoichivyi metod resheniya lineinykh uravnenii s neravnomerno vozmuschennym operatorom”, Dokl. AN, 365:5 (1999), 596–598 | MR | Zbl

[11] Vasilev F. P., Ishmukhametov A. Z., Potapov M. M., Obobschennyi metod momentov v zadachakh optimalnogo upravleniya, Izd-vo MGU, M., 1989 | MR

[12] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[13] Demyanov V. F., Usloviya ekstremuma i variatsionnye zadachi, Vyssh. shkola, M., 2005

[14] Vasilev F. P., Metody optimizatsii, Faktorial, M., 2002

[15] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[16] Kokurin M. Yu., “Metod tochnogo shtrafa dlya monotonnykh variatsionnykh neravenstv i optimalnye po poryadku algoritmy poiska sedlovykh tochek”, Izv. vuzov. Matematika, 2011, no. 8, 23–33 | MR | Zbl

[17] Vinokurov V. A., “Strogaya regulyarizuemost razryvnykh funktsii”, Dokl. AN SSSR, 281:2 (1985), 265–269 | MR | Zbl