Conditionally well-posed and generalized well-posed problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 857-866

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for a pair of metric spaces, the operators of abstract conditionally well-posed problems admit extensions that are continuous on the original domain with respect to the ambient space. As a corollary, it is shown that an arbitrary conditionally well-posed problem can be regularized via an operator independent of the error level in the input data. Certain applications to ill-posed operator equations and variational problems are discussed.
@article{ZVMMF_2013_53_6_a2,
     author = {M. Yu. Kokurin},
     title = {Conditionally well-posed and generalized well-posed problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {857--866},
     publisher = {mathdoc},
     volume = {53},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a2/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - Conditionally well-posed and generalized well-posed problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 857
EP  - 866
VL  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a2/
LA  - ru
ID  - ZVMMF_2013_53_6_a2
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T Conditionally well-posed and generalized well-posed problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 857-866
%V 53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a2/
%G ru
%F ZVMMF_2013_53_6_a2
M. Yu. Kokurin. Conditionally well-posed and generalized well-posed problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 857-866. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a2/