@article{ZVMMF_2013_53_6_a14,
author = {V. D. Irtegov and T. N. Titorenko},
title = {Computer algebra methods in the study of nonlinear differential systems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1027--1040},
year = {2013},
volume = {53},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a14/}
}
TY - JOUR AU - V. D. Irtegov AU - T. N. Titorenko TI - Computer algebra methods in the study of nonlinear differential systems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1027 EP - 1040 VL - 53 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a14/ LA - ru ID - ZVMMF_2013_53_6_a14 ER -
%0 Journal Article %A V. D. Irtegov %A T. N. Titorenko %T Computer algebra methods in the study of nonlinear differential systems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1027-1040 %V 53 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a14/ %G ru %F ZVMMF_2013_53_6_a14
V. D. Irtegov; T. N. Titorenko. Computer algebra methods in the study of nonlinear differential systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 1027-1040. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a14/
[1] Borisov A. V., Mamaev I. S., Sokolov V. V., “Novyi integriruemyi sluchai na $so (4)$”, Dokl. AN, 381:5 (2001), 614–615 | MR
[2] Morozov V. P., “Topologiya sloenii Liuvillya sluchaev integriruemosti Steklova i Sokolova”, Matem. sb., 195:3 (2004), 69–114 | DOI | MR
[3] Ryabov P. E., “Bifurkatsii pervykh integralov v sluchae Sokolova”, Teoreticheskaya i matem. fiz., 134:2 (2003), 207–226 | DOI | MR | Zbl
[4] Lyapunov A. M., “O postoyannykh vintovykh dvizheniyakh tela v zhidkosti”, Sobr. soch., v. 1, AN SSSR, 1954 | MR
[5] Irtegov V. D., Titorenko T. N., “Ob invariantnykh mnogoobraziyakh sistem s pervymi integralami”, PMM, 73:4 (2009), 531–537 | MR
[6] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000
[7] Zharkov A. Yu., Blinkov Yu. A., “Involution approach to solving systems of algebraic equations”, Proc. of Internat. IMACS Symposium on Symbolic Computation: New Trends and Developments (1993), 11–16
[8] Gerdt V. P., “Gröbner bases and involutive methods for algebraic and differential equations”, Math. Comput. Modelling, 25:8–9 (1997), 75–90 | DOI | MR | Zbl
[9] Wang D., “An elimination method for polynomial systems”, J. Symbolic Comput., 16:2 (1993), 83–114 | DOI | MR | Zbl
[10] Wu Wen-Tsun, “Basic principles of mechanical theorem proving in elementary geometries”, J. Automated Reasoning, 1986, no. 2, 221–252 | DOI | MR
[11] Kapur D., “Automated geometric reasoning. Dixon resultants, Gröbner bases, and characteristic sets”, Automated Deduction in Geometry, Proc. of Conf., LNCS, 1360, Springer, Berlin, 1997, 1–36
[12] Weispfenning V., “Comprehensive Gröbner bases”, J. Symbolic Comput., 14:1 (1992), 636–667 | DOI | MR
[13] Montes A., “A new algorithm for discussing Gröbner bases with parameters”, J. Symbolic Computation, 33:2 (2002), 183–208 | DOI | MR | Zbl
[14] Chen C., Maza M., “Comprehensive triangular decomposition”, Computer Algebra in Scientific Computing, Proc. of Conf., LNCS, 4770, Springer, Berlin, 2007, 73–101 | Zbl
[15] Devenport Dzh., Sire I., Turne E., Kompyuternaya algebra. Sistemy i algoritmy algebraicheskikh vychislenii, Mir, M., 1991 | MR
[16] Collins G. E., “Quantifier elimination for real closed fields by cylindrical algebraic decomposition”, Automata Theory and Formal Languages, Proc. of Conf., LNCS, 33, Springer, Berlin, 1975, 134–183 | MR
[17] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2010
[18] Banschikov A. V., Burlakova L. A., Irtegov V. D., Titorenko T. N., Programmnyi kompleks dlya vydeleniya i issledovaniya ustoichivosti statsionarnykh mnozhestv, Svidetelstvo o gos. registratsii programm dlya EVM No 2011615235, FGU-FIPS, 2011