Computation of a shock wave structure in monatomic gas with accuracy control
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 1008-1026 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of a shock wave in a monatomic one-component gas was computed by solving the Boltzmann kinetic equation with accuracy controlled with respect to computational parameters. The hard-sphere molecular model and molecules with the Lennard-Jones potential were considered. The computations were performed in a wide range of Mach numbers with the accuracy no less than 3% for the shock front width and 1% for local values of density and temperature. The shock wave structure was studied in terms of macroscopic gas characteristics and in terms of the molecular velocity distribution function.
@article{ZVMMF_2013_53_6_a13,
     author = {O. I. Dodulad and F. G. Tcheremissine},
     title = {Computation of a shock wave structure in monatomic gas with accuracy control},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1008--1026},
     year = {2013},
     volume = {53},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a13/}
}
TY  - JOUR
AU  - O. I. Dodulad
AU  - F. G. Tcheremissine
TI  - Computation of a shock wave structure in monatomic gas with accuracy control
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1008
EP  - 1026
VL  - 53
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a13/
LA  - ru
ID  - ZVMMF_2013_53_6_a13
ER  - 
%0 Journal Article
%A O. I. Dodulad
%A F. G. Tcheremissine
%T Computation of a shock wave structure in monatomic gas with accuracy control
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1008-1026
%V 53
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a13/
%G ru
%F ZVMMF_2013_53_6_a13
O. I. Dodulad; F. G. Tcheremissine. Computation of a shock wave structure in monatomic gas with accuracy control. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 1008-1026. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a13/

[1] Alsmeyer H., “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam”, J. Fluid. Mech., 74 (1976), 497–513 | DOI

[2] Garen W., Synofzik R., Frohn A., “Shock tube for generation of weak shock waves”, AIAA J., 12 (1974), 1132–1134 | DOI

[3] Hicks B. L., Yen S. M., “Solution of the non-linear Boltzmann equation for plane shock waves”, Rarefied Gas Dynamics, v. 1, Academic Press, New Jork, 1969

[4] Cheremisin F. G., “Chislennoe reshenie kineticheskogo uravneniya Boltsmana dlya odnomernykh statsionarnykh dvizhenii gaza”, Zh. vychisl. i matem. i matem. fiz., 10:3 (1970), 654–665 | Zbl

[5] Hicks B. L., Yen S. M., Reilly B. J., “The internal structures of shock waves”, J. Fluid Mech., 53:1 (1972), 85–111 | DOI | MR | Zbl

[6] Yen S. M., Ng W., “Shock wave structure and intermolecular collision laws”, J. Fluid Mech., 65:1 (1974), 127–144 | DOI | Zbl

[7] Aristov V. V., Cheremisin F. G., “Struktura udarnoi volny v odnoatomnom gaze pri stepennykh potentsialakh vzaimodeistviya”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1982, no. 6, 179–183

[8] Tcheremissine F. G., “Solution of Boltzmann equation for arbitrary molecular potentials”, Proc. 21-th Intern. Symp. on RGD (Cepadues, 1999), v. 2, 165–176

[9] Ohwada T., “Structure of normal shock waves: Direct numerical analysis of the Boltzmann equation for hard-sphere molecules”, Phys. Fluids, 5:1 (1993), 217–234 | DOI | MR | Zbl

[10] Cercignani C., Frezzotti A., Grosfils P., “The structure of infinitely strong shock wave”, Phys. Fluids, 11:9 (1999), 2757–2764 | DOI | MR | Zbl

[11] Takata S., Aoki K., Cercignani C., “The velocity distribution function in an infinitely strong shock wave”, Phys. Fluids, 12:8 (2000), 2116–2127 | DOI | MR

[12] Bird G. A., Molecular gas dynamics and the direct simulation of gas flows, Oxford Univ. Press, Oxford, 1994 | MR

[13] Larina I. N., Rykov V. A., “Nelineino-neravnovesnaya kineticheskaya model uravneniya Boltsmana dlya odnoatomnogo gaza”, Zh. vychisl. i matem. i matem. fiz., 51:11 (2011), 2084–2095 | MR | Zbl

[14] Cheremisin F. G., “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Dokl. AN, 357:1 (1997), 53–56 | MR

[15] Cheremisin F. G., “Reshenie kineticheskogo uravneniya Boltsmana dlya vysokoskorostnykh techenii”, Zh. vychisl. i matem. i matem. fiz., 46:2 (2006), 329–343 | MR | Zbl

[16] Popov S. P., Cheremisin F. G., “Konservativnyi metod resheniya uravneniya Boltsmana dlya tsentralno-simmetrichnykh potentsialov vzaimodeistviya”, Zh. vychisl. i matem. i matem. fiz., 39:1 (1999), 163–176 | MR | Zbl

[17] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR | Zbl

[18] Anikin Yu. A., “O tochnosti proektsionnogo scheta integrala stolknovenii”, Zh. vychisl. i matem. i matem. fiz., 52:4 (2012), 697–719 | Zbl