Modifying a numerical algorithm for solving the matrix equation $X+AX^TB=C$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 853-856
Cet article a éte moissonné depuis la source Math-Net.Ru
Certain modifications are proposed for a numerical algorithm solving the matrix equation $X+AX^TB=C$. By keeping the intermediate results in storage and repeatedly using them, it is possible to reduce the total complexity of the algorithm from $O(n^4)$ to $O(n^3)$ arithmetic operations.
@article{ZVMMF_2013_53_6_a1,
author = {Yu. O. Vorontsov},
title = {Modifying a numerical algorithm for solving the matrix equation $X+AX^TB=C$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {853--856},
year = {2013},
volume = {53},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a1/}
}
TY - JOUR AU - Yu. O. Vorontsov TI - Modifying a numerical algorithm for solving the matrix equation $X+AX^TB=C$ JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 853 EP - 856 VL - 53 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a1/ LA - ru ID - ZVMMF_2013_53_6_a1 ER -
Yu. O. Vorontsov. Modifying a numerical algorithm for solving the matrix equation $X+AX^TB=C$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 853-856. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a1/
[1] Zhou V., Lam J., Duan C.-R., “Toward solution of matrix equation $X=Af(X)B+C$”, Linear Algebra Appl., 435:11 (2011), 1370–1398 | DOI | MR | Zbl
[2] Ikramov Kh. D., Vorontsov Yu. O., “Matrichnoe uravnenie $X+AX^{\mathrm T}B=C$: usloviya odnoznachnoi razreshimosti i algoritm chislennogo resheniya”, Dokl. AN, 443:5 (2012), 545–548 | MR | Zbl