Numerical algorithms for solving matrix equations $AX+BX^T=C$ and $AX+BX^*=C$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 843-852 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions for the unique solvability of matrix equations of the form $AX+BX^T=C$ and $AX+BX^*=C$ are found. Numerical algorithms of the Bartels–Stewart type for solving such equations are described. Certain numerical tests with these algorithms are presented. In particular, the situation where the conditions for unique solvability are “almost” violated is modeled, and the deterioration of the quality of the computed solution in this situation is traced through.
@article{ZVMMF_2013_53_6_a0,
     author = {Yu. O. Vorontsov and Khakim D. Ikramov},
     title = {Numerical algorithms for solving matrix equations $AX+BX^T=C$ and $AX+BX^*=C$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {843--852},
     year = {2013},
     volume = {53},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a0/}
}
TY  - JOUR
AU  - Yu. O. Vorontsov
AU  - Khakim D. Ikramov
TI  - Numerical algorithms for solving matrix equations $AX+BX^T=C$ and $AX+BX^*=C$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 843
EP  - 852
VL  - 53
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a0/
LA  - ru
ID  - ZVMMF_2013_53_6_a0
ER  - 
%0 Journal Article
%A Yu. O. Vorontsov
%A Khakim D. Ikramov
%T Numerical algorithms for solving matrix equations $AX+BX^T=C$ and $AX+BX^*=C$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 843-852
%V 53
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a0/
%G ru
%F ZVMMF_2013_53_6_a0
Yu. O. Vorontsov; Khakim D. Ikramov. Numerical algorithms for solving matrix equations $AX+BX^T=C$ and $AX+BX^*=C$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 6, pp. 843-852. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_6_a0/

[1] Ikramov Kh. D., “Ob usloviyakh odnoznachnoi razreshimosti matrichnogo uravneniya $AX+X^{\mathrm T}B=C$”, Dokl. AN, 430:4 (2010), 444–447 | MR | Zbl

[2] Ikramov Kh. D., Vorontsov Yu. O., “Ob odnoznachnoi razreshimosti matrichnogo uravneniya $AX+X^{\mathrm T}B=C$ v singulyarnom sluchae”, Dokl. AN, 438:5 (2011), 599–602 | MR | Zbl

[3] Vorontsov Yu. O., Ikramov Kh. D., “Chislennyi algoritm dlya resheniya matrichnogo uravneniya $AX+X^{\mathrm T}B=C$”, Zh. vychisl. matem. i matem. fiz., 51:5 (2011), 739–747 | MR | Zbl

[4] Vorontsov Yu. O., Ikramov Kh. D., “Ob usloviyakh odnoznachnoi razreshimosti matrichnogo uravneniya $AX+X^*B=C$”, Zh. vychisl. matem. i matem. fiz., 52:5 (2012), 775–783

[5] Vorontsov Yu. O., “Chislennyi algoritm dlya resheniya matrichnogo uravneniya $AX+X^*B=C$”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 2013, no. 1

[6] Ikramov Kh. D., Vorontsov Yu. O., “Matrichnoe uravnenie $X+AX^{\mathrm T}B=C$: usloviya odnoznachnoi razreshimosti i algoritm chislennogo resheniya”, Dokl. AN, 443:5 (2012), 545–548 | MR | Zbl