Limiting solitons and kinks in two-dimensional discrete systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 5, pp. 792-799 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two-dimensional discrete equations of the first order in time are considered. Each element of the lattice is assumed to interact only with the nearest neighbors and the interaction force tends to a constant for large deviations from the equilibrium. Localized solitary waves (solitons) and kinks whose amplitudes and velocities do not exceed the limiting values are numerically found. The cases of pair interactions are examined.
@article{ZVMMF_2013_53_5_a9,
     author = {S. P. Popov},
     title = {Limiting solitons and kinks in two-dimensional discrete systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {792--799},
     year = {2013},
     volume = {53},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a9/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - Limiting solitons and kinks in two-dimensional discrete systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 792
EP  - 799
VL  - 53
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a9/
LA  - ru
ID  - ZVMMF_2013_53_5_a9
ER  - 
%0 Journal Article
%A S. P. Popov
%T Limiting solitons and kinks in two-dimensional discrete systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 792-799
%V 53
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a9/
%G ru
%F ZVMMF_2013_53_5_a9
S. P. Popov. Limiting solitons and kinks in two-dimensional discrete systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 5, pp. 792-799. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a9/

[1] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris X., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[2] Bogoyavlenskii O. I., Oprokidyvayuschiesya solitony, Nauka, M., 1991 | MR | Zbl

[3] Bibik Yu. V., Popov S. P., “Chislennoe modelirovanie solitonnykh reshenii prosteishikh diskretnykh uravnenii i ikh kontinualnykh analogov”, Matem. modelirovanie, 16:5 (2004), 66–82 | MR

[4] Bibik Yu. V., Popov S. P., “Obobschenie tsepochki Volterra na sluchai sistem s nasyscheniem”, Matematicheskoe modelirovanie na osnove kineticheskikh uravnenii, VTs RAN, M., 2007, 77–106 | MR

[5] Popov S. P., “Solitonnye resheniya obobschennykh diskretnykh uravnenii Kortevega-de Vriza”, Zh. vychisl. matem. i matem. fiz., 48:9 (2008), 1698–1709 | MR

[6] Popov S. P., “Chislennoe modelirovanie solitonov v prosteishikh dvumernykh reshetkakh”, Matem. modelirovanie, 21:9 (2009), 27–33 | Zbl