@article{ZVMMF_2013_53_5_a7,
author = {M. Dumbser and V. A. Titarev and S. V. Utyuzhnikov},
title = {Implicit multiblock method for solving a kinetic equation on unstructured meshes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {767--782},
year = {2013},
volume = {53},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a7/}
}
TY - JOUR AU - M. Dumbser AU - V. A. Titarev AU - S. V. Utyuzhnikov TI - Implicit multiblock method for solving a kinetic equation on unstructured meshes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 767 EP - 782 VL - 53 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a7/ LA - ru ID - ZVMMF_2013_53_5_a7 ER -
%0 Journal Article %A M. Dumbser %A V. A. Titarev %A S. V. Utyuzhnikov %T Implicit multiblock method for solving a kinetic equation on unstructured meshes %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 767-782 %V 53 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a7/ %G ru %F ZVMMF_2013_53_5_a7
M. Dumbser; V. A. Titarev; S. V. Utyuzhnikov. Implicit multiblock method for solving a kinetic equation on unstructured meshes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 5, pp. 767-782. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a7/
[1] Li Z.-H., Zhang H.-X., “Study on gas kinetic unified algorithm for flows from rarefied transition to continuum”, J. Comput. Phys., 193:2 (2004), 708–738 | DOI | Zbl
[2] Kolobov V. I., Arslanbekov R. R., Aristov V. V. et al., “Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement”, J. Comp. Phys., 223 (2007), 589–608 | DOI | Zbl
[3] Kloss Yu. Yu., Cheremisin F. G., Khokhlov N. I., Shurygin B. A., “Programmno-modeliruyuschaya sreda dlya issledovaniya techenii gaza v mikro- i nanostrukturakh na osnove resheniya uravneniya Boltsmana”, Atomnaya energiya, 105:4 (2008), 211–217
[4] Arkhipov A. S., Bishaev A. M., “Primenenie metoda rasschepleniya po fizicheskim protsessam dlya postroeniya chislennogo metoda resheniya sistemy kineticheskikh uravnenii, opisyvayuschikh povedenie strui razrezhennoi plazmy, voznikayuschei ot raboty elektricheskogo reaktivnogo dvigatelya”, Zh. vychisl. matem. i matem. fiz., 52:10 (2012), 1904–1925 | Zbl
[5] Aristov V. V., Frolova A. A., Zabelok S. A. et al., “Simulations of pressure-driven flows through channels and pipes with unified flow solver”, Vacuum, 86:11, Special Issue “Vacuum Gas Dynamics: Theory, experiments and practical applications” (2012), 1717–1724 | DOI
[6] Anikin Yu. A., Dodulad O. I., Kloss Yu. Yu. et al., “Development of applied software for analysis of gas flows in vacuum devices”, Vacuum, 86:11, Special Issue “Vacuum Gas Dynamics: Theory, experiments and practical applications” (2012), 1770–1777 | DOI
[7] Titarev V. A., “Neyavnyi chislennyi metod rascheta prostranstvennykh techenii razrezhennogo gaza na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matem. fiz., 50:10 (2010), 1811–1826 | MR | Zbl
[8] Titarev V. A., “Efficient deterministic modelling of three-dimensional rarefied gas flows”, Communications in Comput. Phys., 12:1 (2012), 161–192 | MR
[9] Titarev V. A., Shakhov E. M., “Computational study of a rarefied gas flow through a long circular pipe into vacuum”, Vacuum, 86:11, Special Issue “Vacuum Gas Dynamics: Theory, experiments and practical applications” (2012), 1709–1716 | DOI
[10] Varoutis S., Valougeorgis D., Sharipov F., “Simulation of gas flow through tubes of finite length over the whole range of rarefaction for various pressure drop ratios”, J. Vac. Sci. Technol. A, 27:6 (2009), 1377–1391 | DOI
[11] Shakhov E. M., “O priblizhennykh kineticheskikh uravneniyakh v teorii razrezhennykh gazov”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1968, no. 1, 158–161
[12] Shakhov E. M., “Ob obobschenii relaksatsionnogo kineticheskogo uravneniya Kruka”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1968, no. 5, 142–145
[13] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh techenii gazovoi dinamiki”, Uchen. zap. TsAGI, 3:6 (1972), 68–77
[14] Kolgan V. P., “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics”, J. Comput. Phys., 230:7 (2011), 2384–2390 | DOI | MR | Zbl
[15] Petrovskaya N. B., Volkov A. V., “Vliyanie geometrii setki na tochnost rekonstruktsii resheniya v konechno-ob'emnykh i konechno-elementnykh skhemakh vysokogo poryadka”, Matem. modelirovanie, 22:3 (2010), 145–160 | MR | Zbl
[16] Aristov V. V., Cheremisin F. G., “Konservativnyi metod rasschepleniya dlya resheniya uravneniya Boltsmana”, Zh. vychisl. matem. i matem. fiz., 20:1 (1980), 191–207 | MR | Zbl
[17] Titarev V. A., “Conservative numerical methods for model kinetic equations”, Computers and Fluids, 36:9 (2007), 1446–1459 | DOI | MR | Zbl
[18] Titarev V. A., Towards fully conservative numerical methods for the nonlinear model Boltzmann equation, Preprint NI03031-NPA, Isaac Newton Institute for Math. Sci. Univ. Cambridge, UK, 2003, 13 pp. | MR
[19] Titarev V. A., “Chislennyi metod rascheta dvukhmernykh nestatsionarnykh techenii razrezhennogo gaza v oblastyakh proizvolnoi formy”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1255–1270 | MR | Zbl
[20] Mieussens L., “Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics”, Math. Models and Meth. Appl. Sci., 8:10 (2000), 1121–1149 | MR
[21] Mieussens L., “Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries”, J. Comput. Phys., 162:2 (2000), 429–466 | DOI | MR | Zbl
[22] Men'shov I. S., Nakamura Y., “An implicit advection upwind splitting scheme for hypersonic air flows in thermochemical nonequilibrium”, A Collection of Technical Papers of 6th Int. Symp. on CFD, v. 2, Lake Tahoe, Nevada, 1995, 815
[23] Men'shov I. S., Nakamura Y., “On implicit Godunov's method with exactly linearized numerical flux”, Computers and Fluids, 29:6 (2000), 595–616 | DOI
[24] Aristov V. V., Zabelok C. A., “Deterministicheskii metod resheniya uravneniya Boltsmana s parallelnymi vychisleniyami”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 425–437 | MR | Zbl
[25] Dumbser M., Käser M., Titarev V. A., Toro E. F., “Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems”, J. Comput. Phys., 226 (2007), 204–243 | DOI | MR | Zbl
[26] Pavlukhin P. V., Menshov I. S., “Effektivnaya parallelnaya realizatsiya metoda LU-SGS dlya zadach gazovoi dinamiki”, Nauchnyi vestnik MGTU GA, 2011, no. 165, 46–54
[27] Sharov D., Luo H., Baum J. D., Löhner R., “Implementation of unstructured grid GMRES+LU-SGS method on shared-memory, cache-based parallel computers”, Aerospace Sciences Meeting and Exhibit, 38th. (10–13 Jan. 2000, Reno, NV), AIAA-2000-0927 | Zbl
[28] Karypis G., Kumar V., “Multilevel k-way partitioning scheme for irregular graphs”, J. Parallel Distrib. Comput., 48 (1998), 96–129 | DOI
[29] Titarev V. A., “Rarefied flow in a long planar microchannel of finite length”, J. Comput. Phys., 231:1 (2012), 109–134 | DOI | MR | Zbl