The Cauchy problem for the radiative transfer equation with generalized conjugation conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 5, pp. 753-766 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The initial boundary problem for the nonstationary radiative transfer equation in a nonhomogeneous plane layer with generalized conjugation conditions on the material interface is studied. A generalized Monte-Carlo algorithm is proposed for solving the problem, and numerical experiments are discussed.
@article{ZVMMF_2013_53_5_a6,
     author = {I. V. Prokhorov},
     title = {The {Cauchy} problem for the radiative transfer equation with generalized conjugation conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {753--766},
     year = {2013},
     volume = {53},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a6/}
}
TY  - JOUR
AU  - I. V. Prokhorov
TI  - The Cauchy problem for the radiative transfer equation with generalized conjugation conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 753
EP  - 766
VL  - 53
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a6/
LA  - ru
ID  - ZVMMF_2013_53_5_a6
ER  - 
%0 Journal Article
%A I. V. Prokhorov
%T The Cauchy problem for the radiative transfer equation with generalized conjugation conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 753-766
%V 53
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a6/
%G ru
%F ZVMMF_2013_53_5_a6
I. V. Prokhorov. The Cauchy problem for the radiative transfer equation with generalized conjugation conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 5, pp. 753-766. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a6/

[1] Marchuk G. I., Mikhailov G. A., Nazaraliev M. A. i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | Zbl

[2] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[3] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981 | MR

[4] Novikov V. M., Shikhov S. B., Teoriya parametricheskogo vozdeistviya na perenos neitronov, Energoizdat, M., 1982

[5] Kuznetsov V. S., Nikolaeva O. V., Bass L. P. i dr., “Modelirovanie rasprostraneniya ultrakorotkogo impulsa sveta cherez silno rasseivayuschuyu sredu”, Matem. modelirovanie, 21:4 (2009), 3–14 | Zbl

[6] Boulanouar M., Emamirad H., “The asymptotic behavior for a transport equation in cell population dynamics with a null maturation velocity”, J. Math. Anal. Appl., 243 (2000), 47–63 | DOI | MR | Zbl

[7] Prokhorov I. V., Yarovenko I. P., “Issledovanie zadach opticheskoi tomografii metodami teorii perenosa izlucheniya”, Optika i spektroskopiya, 101:5 (2006), 817–824

[8] Prokhorov I. V., Yarovenko I. P., Nazarov V. G., “Optical tomography problems at layered media”, Inverse Problems, 24:2 (2008), 025019 | DOI | MR | Zbl

[9] Prokhorov I. V., “O razreshimosti kraevoi zadachi dlya uravneniya perenosa izlucheniya s obobschennymi usloviyami sopryazheniya na granitse razdela sred”, Izv. RAN. Ser. matematicheskaya, 67:6 (2003), 169–192 | DOI | MR | Zbl

[10] Prokhorov I. V., “O strukture mnozhestva nepreryvnosti resheniya kraevoi zadachi dlya uravneniya perenosa izlucheniya”, Matem. zametki, 86:2 (2009), 256–272 | DOI | MR | Zbl

[11] Kovtanyuk A. E., Prokhorov I. V., “A boundary-value problem for the polarized-radiation transfer equation with Fresnel interface conditions for a layered medium”, J. Comput. and Appl. Math., 235:8 (2011), 2006–2014 | DOI | MR | Zbl

[12] Yarovenko I. P., “Chislennoe reshenie kraevykh zadach dlya uravneniya perenosa izlucheniya v opticheskom diapazone”, Vychisl. metody i programmirovanie: novye vychisl. tekhnologii, 7:1 (2006), 93–104 | MR

[13] Prokhorov I. V., “O razreshimosti nachalno-kraevoi zadachi dlya integro-differentsialnogo uravneniya”, Sibir. matem. zh., 53:2 (2012), 377–387 | MR | Zbl

[14] Lotova G. Z., Mikhailov G. A., “Novye metody Monte-Karlo dlya otsenki vremennýkh zavisimostei v protsesse perenosa izlucheniya”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 569–579 | MR | Zbl

[15] Mikhailov G. A., Tracheva N. V., Ukhinov S. A., “Issledovanie vremennói asimptotiki intensivnosti polyarizovannogo izlucheniya metodom Monte-Karlo”, Zh. vychisl. matem. i matem. fiz., 47:7 (2007), 1264–1275 | MR

[16] Brednikhin S. A., Medvedev I. N., Mikhailov G. A., “Otsenka parametrov kritichnosti vetvyaschikhsya protsessov metodom Monte-Karlo”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 362–374 | MR | Zbl

[17] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl