Cones of multipowers and combinatorial optimization problems
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 5, pp. 816-824
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The cone of multipowers is dual to the cone of nonnegative polynomials. The relation of the former cone to combinatorial optimization problems is examined. Tensor extensions of polyhedra of combinatorial optimization problems are used for this purpose. The polyhedron of the MAX-2-CSP problem (optimization version of the two-variable constraint satisfaction problem) of tensor degree $4k$ is shown to be the intersection of the cone of $4k$-multipowers and a suitable affine space. Thus, in contrast to SDP relaxations, the relaxation to a cone of multipowers becomes tight even for an extension of degree 4.
            
            
            
          
        
      @article{ZVMMF_2013_53_5_a12,
     author = {M. N. Vyalyi},
     title = {Cones of multipowers and combinatorial optimization problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {816--824},
     publisher = {mathdoc},
     volume = {53},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a12/}
}
                      
                      
                    TY - JOUR AU - M. N. Vyalyi TI - Cones of multipowers and combinatorial optimization problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 816 EP - 824 VL - 53 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a12/ LA - ru ID - ZVMMF_2013_53_5_a12 ER -
M. N. Vyalyi. Cones of multipowers and combinatorial optimization problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 5, pp. 816-824. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a12/