@article{ZVMMF_2013_53_5_a1,
author = {H. Mesgarani and R. Mollapourasl},
title = {Theoretical investigation on error analysis of {Sinc} approximation for mixed {Volterra{\textendash}Fredholm} integral equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {701},
year = {2013},
volume = {53},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a1/}
}
TY - JOUR AU - H. Mesgarani AU - R. Mollapourasl TI - Theoretical investigation on error analysis of Sinc approximation for mixed Volterra–Fredholm integral equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 701 VL - 53 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a1/ LA - en ID - ZVMMF_2013_53_5_a1 ER -
%0 Journal Article %A H. Mesgarani %A R. Mollapourasl %T Theoretical investigation on error analysis of Sinc approximation for mixed Volterra–Fredholm integral equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 701 %V 53 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a1/ %G en %F ZVMMF_2013_53_5_a1
H. Mesgarani; R. Mollapourasl. Theoretical investigation on error analysis of Sinc approximation for mixed Volterra–Fredholm integral equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 5. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a1/
[1] S. Gorenflo, S. Vessella, Abel integral equations. Analysis and applications, Springer, Berlin, 1991 | MR
[2] E. G. Ladopoulos, Singular Integral Equations: Linear and Nonlinear Theory and Its Applications in Science and Engineering, Springer, Berlin, 2000 | MR | Zbl
[3] K. Maleknejad, E. Najafi, “Numerical solution of nonlinear Volterra integral equations with nonincreasing kernel and an application”, Bull. Malays. Math. Sci. Soc., 34:2 (2011), 379–388 | MR | Zbl
[4] R. P. Agarwal, J. Banas, R. Mollapourasl, T. Gnana Bhaskar, “On solutions of a generalized neutral logistic differential equation”, Adv. Stud. Contemp. Math. (Kyungshang), 20:2 (2010), 279–290 | MR | Zbl
[5] P. Maleknejad, R. Torabi, R. Mollapourasl, “Fixed point method for solving nonlinear quadratic Volterra integral equations”, Comput. Math. Appl., 62 (2011), 2555–2566 | DOI | MR | Zbl
[6] A. N. Sidorov, M. V. Falaleev, D. N. Sidorov, “Generalized solutions of Volterra integral equations of the first kind”, Bull. Malays. Math. Sci. Soc. (2), 29:1 (2006), 101–109 | MR | Zbl
[7] B. Rzepecki, “Measure of noncompactness and Krasnosel'skii's fixed point theorem”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 24 (1976), 861–865 | MR
[8] W. Volk, “The iterated Galerkin methods for linear integro-differential equations”, J. Comp. Appl. Math., 21 (1988), 63–74 | DOI | MR | Zbl
[9] F. Maleknejad, F. Mirzaee, “Using rationalized Haar wavelet for solving linear integral equations”, Appl. Math. Comp., 160 (2005), 579–587 | DOI | MR | Zbl
[10] A. Avudainayagam, G. Vani, “Wavelet Galerkin method for integro-differential equations”, Appl. Numer. Math., 32 (2000), 247–254 | DOI | MR | Zbl
[11] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag, New York, 1993 | MR | Zbl
[12] X. Shang, D. Han, “Numerical solution of Fredholm integral equations of the first kind by using linear Legendre multiwavelets”, Appl. Math. Comput., 191 (2007), 440–444 | DOI | MR | Zbl
[13] E. Babolian, Z. Masouri, “Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions”, J. Comput. Appl. Math., 220 (2008), 51–57 | DOI | MR | Zbl
[14] E. Babolian, T. Lotfi, M. Paripour, “Wavelet moment method for solving Fredholm integral equations of the first kind”, Appl. Math. Comput., 186 (2007), 1467–1471 | DOI | MR | Zbl
[15] B. Bialecki, “Sinc-collocation methods for two-point boundary value problems”, IMA J. Numer. Anal., 11 (1991), 357–375 | DOI | MR | Zbl
[16] J. Lund, “Symmetrization of the Sinc-Galerkin method for boundary value problems”, Math. Comput., 47 (1986), 571–588 | DOI | MR | Zbl
[17] J. Lund, K. L. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, 1992 | MR | Zbl