An extension of the Krylov method for calculating the coefficients of the minimal polynomial
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 5, pp. 691-700 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of a $k$-minimal polynomial of an operator is introduced, and a method for approximate calculation of the coefficients of this polynomial is proposed. The method uses the calculated values of certain functionals on iterations of the operator. Special features emerging when the algorithm is used in combination with the Monte-Carlo method are discussed, and numerical results are given.
@article{ZVMMF_2013_53_5_a0,
     author = {K. O. Vidyaeva and S. M. Ermakov},
     title = {An extension of the {Krylov} method for calculating the coefficients of the minimal polynomial},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {691--700},
     year = {2013},
     volume = {53},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a0/}
}
TY  - JOUR
AU  - K. O. Vidyaeva
AU  - S. M. Ermakov
TI  - An extension of the Krylov method for calculating the coefficients of the minimal polynomial
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 691
EP  - 700
VL  - 53
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a0/
LA  - ru
ID  - ZVMMF_2013_53_5_a0
ER  - 
%0 Journal Article
%A K. O. Vidyaeva
%A S. M. Ermakov
%T An extension of the Krylov method for calculating the coefficients of the minimal polynomial
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 691-700
%V 53
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a0/
%G ru
%F ZVMMF_2013_53_5_a0
K. O. Vidyaeva; S. M. Ermakov. An extension of the Krylov method for calculating the coefficients of the minimal polynomial. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 5, pp. 691-700. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a0/

[1] Gantmakher F. R., Teoriya matrits, Izd. 4-e, dop., Nauka, M., 1988 | MR | Zbl

[2] Ermakov S. M., Vidyaeva K. O., “Ob otsenke spektra lineinogo operatora”, SPb.: Vestnik, Ser. 1, 2012, 11–17

[3] Kertiss D., “Metody Monte-Karlo dlya iteratsii lineinykh operatorov”, UMN, 1957, no. 5, 149–174

[4] Uilks S., Matematicheskaya statistika, Nauka, M., 1967 | MR

[5] Ermakov S., “MCQMC Algorithms for some classes of equations”, Monte Carlo and Quasi-Monte Carlo Methods 2006, eds. Keller A., Heinrich S., Niderreitereds H., Springer, Berlin, 2008 | MR

[6] Ermakov S. M., Metod Monte-Karlo v vychislitelnoi matematike. Vvodnyi kurs, Nevskii Dialekt, SPb.; Binom, M., 2009