An extension of the Krylov method for calculating the coefficients of the minimal polynomial
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 5, pp. 691-700
Cet article a éte moissonné depuis la source Math-Net.Ru
The concept of a $k$-minimal polynomial of an operator is introduced, and a method for approximate calculation of the coefficients of this polynomial is proposed. The method uses the calculated values of certain functionals on iterations of the operator. Special features emerging when the algorithm is used in combination with the Monte-Carlo method are discussed, and numerical results are given.
@article{ZVMMF_2013_53_5_a0,
author = {K. O. Vidyaeva and S. M. Ermakov},
title = {An extension of the {Krylov} method for calculating the coefficients of the minimal polynomial},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {691--700},
year = {2013},
volume = {53},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a0/}
}
TY - JOUR AU - K. O. Vidyaeva AU - S. M. Ermakov TI - An extension of the Krylov method for calculating the coefficients of the minimal polynomial JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 691 EP - 700 VL - 53 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a0/ LA - ru ID - ZVMMF_2013_53_5_a0 ER -
%0 Journal Article %A K. O. Vidyaeva %A S. M. Ermakov %T An extension of the Krylov method for calculating the coefficients of the minimal polynomial %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 691-700 %V 53 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a0/ %G ru %F ZVMMF_2013_53_5_a0
K. O. Vidyaeva; S. M. Ermakov. An extension of the Krylov method for calculating the coefficients of the minimal polynomial. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 5, pp. 691-700. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_5_a0/
[1] Gantmakher F. R., Teoriya matrits, Izd. 4-e, dop., Nauka, M., 1988 | MR | Zbl
[2] Ermakov S. M., Vidyaeva K. O., “Ob otsenke spektra lineinogo operatora”, SPb.: Vestnik, Ser. 1, 2012, 11–17
[3] Kertiss D., “Metody Monte-Karlo dlya iteratsii lineinykh operatorov”, UMN, 1957, no. 5, 149–174
[4] Uilks S., Matematicheskaya statistika, Nauka, M., 1967 | MR
[5] Ermakov S., “MCQMC Algorithms for some classes of equations”, Monte Carlo and Quasi-Monte Carlo Methods 2006, eds. Keller A., Heinrich S., Niderreitereds H., Springer, Berlin, 2008 | MR
[6] Ermakov S. M., Metod Monte-Karlo v vychislitelnoi matematike. Vvodnyi kurs, Nevskii Dialekt, SPb.; Binom, M., 2009