Effect of cubic nonlinearity on soliton solutions of the Benjamin–Bona–Mahony equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 624-633 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Soliton solutions of the Benjamin–Bona–Mahony equation with quadratic and cubic nonlinear terms are numerically simulated. Solitons with limiting amplitudes are found, and their interactions with solitons of other types are examined. Estimates for inelastic effects are presented.
@article{ZVMMF_2013_53_4_a8,
     author = {S. P. Popov},
     title = {Effect of cubic nonlinearity on soliton solutions of the {Benjamin{\textendash}Bona{\textendash}Mahony} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {624--633},
     year = {2013},
     volume = {53},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a8/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - Effect of cubic nonlinearity on soliton solutions of the Benjamin–Bona–Mahony equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 624
EP  - 633
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a8/
LA  - ru
ID  - ZVMMF_2013_53_4_a8
ER  - 
%0 Journal Article
%A S. P. Popov
%T Effect of cubic nonlinearity on soliton solutions of the Benjamin–Bona–Mahony equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 624-633
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a8/
%G ru
%F ZVMMF_2013_53_4_a8
S. P. Popov. Effect of cubic nonlinearity on soliton solutions of the Benjamin–Bona–Mahony equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 624-633. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a8/

[1] Pelinovskii E. N., Slyunyaev A. V., “Generatsiya i vzaimodeistvie solitonov bolshoi amplitudy”, Pisma v Zh. eksperim. i teor. fiz., 67:9 (1998), 628–633

[2] Slyunyaev A. V., Pelinovskii E. N., “Dinamika solitonov bolshoi amplitudy”, Zh. eksperim. i teor. fiz., 116:1(7) (1999), 318–335

[3] Benjamin T. B., Bona J. L., Mahony J. J., “Model equations for long waves in nonlinear dispersive systems”, Phil. Trans. R. Soc. London. Ser. A, 272:1220 (1972), 47–78 | DOI | MR | Zbl

[4] Morrison P. J., Meiss J. D., Carey J. R., “Scattering of RLW solitary waves”, J. Physica D, 1984, no. 11, 324–336 | DOI | MR | Zbl

[5] Zabusky N. J., Proc. Symp. on nonlinear parfial diferential equations, ed. W. F. Ames, Academic, New York, 1987, 223–258

[6] Hereman W., Takaoka M., “Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA”, J. Phys. A, 23:21 (1990), 4805–4822 | DOI | MR | Zbl

[7] Kudryashov N. A., “Simplest equation method to look for exact solutions of nonlinear differential equations”, Chaos, Solitons and Fractals, 24:5 (2005), 1217–1231 | DOI | MR | Zbl

[8] Kudryashov N. A., Demina M. V., “Traveling wave solutions of the generalized nonlinear evolution equations”, J. Appl. Math. and Comput., 210:2 (2009), 551–557 | DOI | MR | Zbl

[9] Demina M. V., Kudryashov N. A., Sinelschikov D. I., “Metod mnogougolnikov dlya postroeniya tochnykh reshenii nekotorykh nelineinykh differentsialnykh uravnenii dlya opisaniya voln na vode”, Zh. vychisl. matem. i matem. fiz., 48:12 (2008), 2151–2162 | MR

[10] Dag I., Saka B., “A cubic B-spline collocation method for EW equation”, Math. and Comput. Appl., 9:3 (2004), 381–392 | MR | Zbl

[11] Duran A., Lopez-Marcos M. A., “Conservative numerical methods for solitary wave interaction”, J. Phys. A: Math. Gen., 2003, no. 36, 7761–7770 | DOI | MR | Zbl

[12] Popov S. P., “O primenenii kvazispektralnogo metoda Fure k solitonosoderzhaschim uravneniyam”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2176–2183 | MR | Zbl

[13] Popov S. P., “Solitonnye resheniya obobschennykh diskretnykh uravnenii Kortevega-de Vriza”, Zh. vychisl. matem. i matem. fiz., 48:9 (2008), 1698–1709 | MR