Calculating the surface currents in electromagnetic scattering by screens of complex geometry
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 615-623 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The vector problem of scattering an external electromagnetic field by a perfectly conducting thin bounded screen is considered. The approximation property of rooftop basis functions is proven. Numerical solutions of the problem for a screen of canonical shape are obtained using the Galerkin method. Numerical solutions of the problem for screens of complex geometry are obtained by a subhierarchic method.
@article{ZVMMF_2013_53_4_a7,
     author = {M. Yu. Medvedik},
     title = {Calculating the surface currents in electromagnetic scattering by screens of complex geometry},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {615--623},
     year = {2013},
     volume = {53},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a7/}
}
TY  - JOUR
AU  - M. Yu. Medvedik
TI  - Calculating the surface currents in electromagnetic scattering by screens of complex geometry
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 615
EP  - 623
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a7/
LA  - ru
ID  - ZVMMF_2013_53_4_a7
ER  - 
%0 Journal Article
%A M. Yu. Medvedik
%T Calculating the surface currents in electromagnetic scattering by screens of complex geometry
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 615-623
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a7/
%G ru
%F ZVMMF_2013_53_4_a7
M. Yu. Medvedik. Calculating the surface currents in electromagnetic scattering by screens of complex geometry. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 615-623. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a7/

[1] Ilinskii A. S., Smirnov Yu. G., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh, Radiotekhnika, M., 1996

[2] Hänninen I., Taskinen M., Sarvas J., “Singularity subtraction integral formulae for surface integral equations with RWG, rooftop and hybrid basis functions”, Prog. Electromagn. Res. PIER, 63 (2006), 243–278 | DOI

[3] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR

[4] Smirnov Yu. G., “O razreshimosti vektornykh integrodifferentsialnykh uravnenii v zadache difraktsii elektromagnitnogo polya na ekranakh proizvolnoi formy”, Zh. vychisl. matem. i matem. fiz., 34:10 (1994), 1461–1475 | MR | Zbl

[5] Rao S. M., Wilton D. R., Glisson A. W., “Electromagnetic scattering by surface of arbitrary share”, IEEE Transactions on Antennas and Propagation, Ap-30:5 (1982), 409–417 | DOI

[6] Smirnov Yu. G., “O skhodimosti metodov Galerkina dlya uravnenii s operatorami, ellipticheskimi na podprostranstvakh, i o reshenii uravneniya elektricheskogo polya”, Zh. vychisl. matem. i matem. fiz., 47:1 (2007), 133–143

[7] Peter A., Zwamborn M., van den Berg Peter M., “A weak form of the conjugate gradient FFT method for plate problems”, IEEE Transactions on Antennas and Propagation, 39:2 (1991), 224–228 | DOI | MR

[8] Medvedik M. Yu., “Primenenie subierarkhicheskogo metoda v zadachakh elektrodinamiki”, Vychisl. metody i programmirovanie, 13 (2012), 87–97

[9] Medvedik M. Yu., Smirnov Yu. G., Sobolev S. I., “Parallelnyi algoritm rascheta poverkhnostnykh tokov v elektromagnitnoi zadache difraktsii na ekrane”, Vychisl. metody i programmirovanie, 6 (2005), 99–108

[10] Medvedik M. Yu., Smirnov Yu. G., “Subierarkhicheskii parallelnyi vychislitelnyi algoritm i skhodimost metoda Galerkina v zadachakh difraktsii elektromagnitnogo polya na ploskom ekrane”, Izvestiya VUZov. Povolzhskii region. Estestvennye nauki, 2004, no. 5, 5–19

[11] Antonov A. V., Medvedik M. Yu., Smirnov Yu. G., “Razrabotka Web-orientirovannogo vychislitelnogo kompleksa dlya resheniya trekhmernykh vektornykh zadach difraktsii elektromagnitnykh voln na osnove subierarkhicheskikh parallelnykh algoritmov i GRID tekhnologii”, Izvestiya VUZov. Povolzhskii region. Fiz.-matem. nauki, 2007, no. 4, 60–67 | MR

[12] Medvedik M. Yu., Smirnov Yu. G., “Subierarkhicheskii parallelnyi vychislitelnyi algoritm dlya resheniya zadach difraktsii elektromagnitnykh voln na ploskikh ekranakh”, Radiotekhn. i elektronika, 53:4 (2008), 441–446

[13] Medvedik M. Yu., Rodionova I. A., “Subierarkhicheskii metod dlya resheniya psevdodifferentsialnogo uravneniya v zadache difraktsii v sloyakh, svyazannykh cherez otverstie”, Izvestiya VUZov. Povolzhskii region. Fiz.-matem. nauki, 2009, no. 3, 59–70

[14] Medvedik M. Yu., Rodionova I. A., Smirnov Yu. G., “Subierarkhicheskii metod dlya resheniya psevdodifferentsialnogo uravneniya v zadache difraktsii v sloyakh, svyazannykh cherez otverstie”, Radiotekhn. i elektronika, 57:3 (2012), 281–290