Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 575-599 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a singularly perturbed parabolic convection-diffusion equation, the conditioning and stability of finite difference schemes on uniform meshes are analyzed. It is shown that a convergent standard monotone finite difference scheme on a uniform mesh is not $\varepsilon$-uniformly well conditioned or $\varepsilon$-uniformly stable to perturbations of the data of the grid problem (here, $\varepsilon$ is a perturbation parameter, $\varepsilon\in(0,1]$). An alternative finite difference scheme is proposed, namely, a scheme in which the discrete solution is decomposed into regular and singular components that solve grid subproblems considered on uniform meshes. It is shown that this solution decomposition scheme converges $\varepsilon$-uniformly in the maximum norm at an $O(N^{-1}\ln N+N_0^{-1})$ rate, where $N+1$ and $N_0+1$ are the numbers of grid nodes in $x$ and $t$, respectively. This scheme is $\varepsilon$-uniformly well conditioned and $\varepsilon$-uniformly stable to perturbations of the data of the grid problem. The condition number of the solution decomposition scheme is of order $O(\delta^{-2}\ln\delta^{-1}+\delta_0^{-1})$; i.e., up to a logarithmic factor, it is the same as that of a classical scheme on uniform meshes in the case of a regular problem. Here, $\delta=N^{-1}\ln N$ and $\delta_0=N_0^{-1}$ are the accuracies of the discrete solution in $x$ and $t$, respectively.
@article{ZVMMF_2013_53_4_a5,
     author = {G. I. Shishkin},
     title = {Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {575--599},
     year = {2013},
     volume = {53},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a5/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 575
EP  - 599
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a5/
LA  - ru
ID  - ZVMMF_2013_53_4_a5
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 575-599
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a5/
%G ru
%F ZVMMF_2013_53_4_a5
G. I. Shishkin. Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 575-599. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a5/

[1] Allen D. N., Southwell R. V., “Relaxation methods applied to determine the motion, in two dimensions, of viscous fluid past a fixed cylinder”, Quart. J. Mech. Appl. Math., 8:2 (1955), 129–145 | DOI | MR | Zbl

[2] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[3] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[4] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scientifc, Singapore, 1996

[5] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman and Hall/CRC, Boca Raton, 2000 | MR | Zbl

[6] Ross H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems, 2nd., Springer, Berlin, 2008 | MR

[7] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 140, CRC, Boca Raton, 2009 | MR | Zbl

[8] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[9] Shishkin G. I., “Approksimatsiya reshenii singulyarno vozmuschennykh kraevykh zadach s parabolicheskim sloem”, Zh. vychisl. matem. i matem. fiz., 29:7 (1989), 963–977 | MR

[10] Shishkin G. I., “Grid approximation of parabolic equations with small parameter multiplying the space and time derivatives. Reaction-diffusion equations”, Math. Balkanica (N.S.), 12:1–2 (1998), 179–214 | MR | Zbl

[11] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[12] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh uravnenii s konvektivnymi chlenami pri vozmuschenii dannykh”, Zh. vychisl. matem. i matem. fiz., 41:5 (2001), 692–707 | MR | Zbl

[13] Shishkin G. I., “Obuslovlennost raznostnykh skhem dlya singulyarno vozmuschennogo parabolicheskogo uravneniya konvektsii-diffuzii”, Zh. vychisl. matem i matem. fiz., 48:5 (2008), 813–830 | MR | Zbl

[14] Shishkin G., “Stability of difference schemes on uniform grids for a singularly perturbed convection-diffusion equation”, Numerical Math. Advanc. Appl. 2011, Proc. of ENUMATH 2011, eds. Cangiani A. et al., Springer, Berlin, 2013, 293–302 | DOI

[15] Shishkin G. I., “Obuslovlennost raznostnoi skhemy metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo uravneniya konvektsii-diffuzii”, Tr. IMM UrO RAN, 18:2 (2012), 291–304 | MR

[16] Shishkin G. I., Shishkina L. P., “Uluchshennaya raznostnaya skhema metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo (obyknovennogo differentsialnogo) uravneniya reaktsii-diffuzii”, Tr. IMM UrO RAN, 16, no. 1, 2010, 255–271

[17] Shishkin G. I., “Difference scheme of the solution decomposition method for a singularly perturbed parabolic reaction-diffusion equation”, Russian J. Numerical Analys. Math. Model. (RJNAMM), 25:3 (2010), 261–278 | MR | Zbl

[18] Shishkin G. I., Shishkina L. P., “Skhema Richardsona metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo parabolicheskogo uravneniya reaktsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2113–2133 | MR | Zbl

[19] Shishkina L., Shishkin G., “Difference scheme of the solution decomposition method for a singularly perturbed parabolic convection-diffusion equation”, Numerical Math. Advanc. Appl. 2011, Proc. of ENUMATH 2011, eds. Cangiani A. et al., Springer, Berlin, 2013, 303–312 | DOI

[20] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[21] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[22] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl

[23] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya bazovykh znanii, M., 2001