Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 575-599

Voir la notice de l'article provenant de la source Math-Net.Ru

For a singularly perturbed parabolic convection-diffusion equation, the conditioning and stability of finite difference schemes on uniform meshes are analyzed. It is shown that a convergent standard monotone finite difference scheme on a uniform mesh is not $\varepsilon$-uniformly well conditioned or $\varepsilon$-uniformly stable to perturbations of the data of the grid problem (here, $\varepsilon$ is a perturbation parameter, $\varepsilon\in(0,1]$). An alternative finite difference scheme is proposed, namely, a scheme in which the discrete solution is decomposed into regular and singular components that solve grid subproblems considered on uniform meshes. It is shown that this solution decomposition scheme converges $\varepsilon$-uniformly in the maximum norm at an $O(N^{-1}\ln N+N_0^{-1})$ rate, where $N+1$ and $N_0+1$ are the numbers of grid nodes in $x$ and $t$, respectively. This scheme is $\varepsilon$-uniformly well conditioned and $\varepsilon$-uniformly stable to perturbations of the data of the grid problem. The condition number of the solution decomposition scheme is of order $O(\delta^{-2}\ln\delta^{-1}+\delta_0^{-1})$; i.e., up to a logarithmic factor, it is the same as that of a classical scheme on uniform meshes in the case of a regular problem. Here, $\delta=N^{-1}\ln N$ and $\delta_0=N_0^{-1}$ are the accuracies of the discrete solution in $x$ and $t$, respectively.
@article{ZVMMF_2013_53_4_a5,
     author = {G. I. Shishkin},
     title = {Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {575--599},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a5/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 575
EP  - 599
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a5/
LA  - ru
ID  - ZVMMF_2013_53_4_a5
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 575-599
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a5/
%G ru
%F ZVMMF_2013_53_4_a5
G. I. Shishkin. Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 575-599. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a5/