@article{ZVMMF_2013_53_4_a2,
author = {Ya. V. Bazaikin and I. A. Taimanov},
title = {{\CYRO}{\cyrb} {\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrm} {\cyrch}{\cyri}{\cyrs}{\cyrl}{\cyre}{\cyrn}{\cyrn}{\cyro}{\cyrm} {\cyra}{\cyrl}{\cyrg}{\cyro}{\cyrr}{\cyri}{\cyrt}{\cyrm}{\cyre} {\cyrv}{\cyrery}{\cyrch}{\cyri}{\cyrs}{\cyrl}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrt}{\cyro}{\cyrp}{\cyro}{\cyrl}{\cyro}{\cyrg}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrh} {\cyrh}{\cyra}{\cyrr}{\cyra}{\cyrk}{\cyrt}{\cyre}{\cyrr}{\cyri}{\cyrs}{\cyrt}{\cyri}{\cyrk} {\cyrt}{\cyrr}{\cyre}{\cyrh}{\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyrery}{\cyrh} {\cyrt}{\cyre}{\cyrl}},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {523--530},
year = {2013},
volume = {53},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a2/}
}
TY - JOUR AU - Ya. V. Bazaikin AU - I. A. Taimanov TI - Об одном численном алгоритме вычисления топологических характеристик трехмерных тел JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 523 EP - 530 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a2/ LA - ru ID - ZVMMF_2013_53_4_a2 ER -
%0 Journal Article %A Ya. V. Bazaikin %A I. A. Taimanov %T Об одном численном алгоритме вычисления топологических характеристик трехмерных тел %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 523-530 %V 53 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a2/ %G ru %F ZVMMF_2013_53_4_a2
Ya. V. Bazaikin; I. A. Taimanov. Об одном численном алгоритме вычисления топологических характеристик трехмерных тел. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 523-530. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a2/
[1] Edelsbrunner H., Harer J., Zomorodian A. J., “Hierarchical Morse-smale complexes for piecewise linear 2-manifolds”, AMC Symposium on Comput. Geometry, Discrete Comput. Geom., 30:1 (2003), 87–107 | DOI | MR | Zbl
[2] Kaczynski T., Mischaikow K., Mrozek M., Computational Homology, Appl. Math. Sci. Series, 157, Springer, New York, 2004 | MR | Zbl
[3] Zomorodian Afra J., Topology for computing, Cambridge University Press, 2005 | MR | Zbl
[4] Mors M., Variatsionnoe ischislenie v tselom, IKI, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010
[5] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR
[6] Forman R., “Morse theory for cell complexes”, Advances in Math., 134 (1998), 90–145 | DOI | MR | Zbl
[7] Allili M., Corriveau D., Derivi'ere S. et al., “Discrete dynamical system framework for construction of connections between critical regions in lattice height data”, J. Math. Imaging and Vision, 28:2 (2007), 99–111 | DOI | MR
[8] Corriveau D., Allili M., Ziou D., “Morse connections graph for shape representation”, Advanc. Concepts for Intelligent Vision Systems, Lect. Notes in Comput. Sci., 3708, 2005, 219–226 | DOI
[9] Gyulassy A., Bremer P.-T., Hamann B., Pascucci V., “A practical approach to morse-smale complex computation: scalability and generality”, IEEE Trans. Vis. Comput Graph., 14:6 (2008), 1619–1626 | DOI
[10] De Floriani L., Mesmoudi M. M., Donovaro E., “Extraction of critical nets based on a discrete gradient vector field”, Geometric Algorithms and Visibility, Eurographics 2002 https://diglib.eg.org/EG/DL/Conf/EG2002/short/short86.pdf
[11] Chen L., Rong Y., “Digital topological method for computing genus and the Betti numbers”, Topology and its Appl., 157 (2010), 1931–1936 | DOI | MR | Zbl
[12] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR