Об одном численном алгоритме вычисления топологических характеристик трехмерных тел
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 523-530 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2013_53_4_a2,
     author = {Ya. V. Bazaikin and I. A. Taimanov},
     title = {{\CYRO}{\cyrb} {\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrm} {\cyrch}{\cyri}{\cyrs}{\cyrl}{\cyre}{\cyrn}{\cyrn}{\cyro}{\cyrm} {\cyra}{\cyrl}{\cyrg}{\cyro}{\cyrr}{\cyri}{\cyrt}{\cyrm}{\cyre} {\cyrv}{\cyrery}{\cyrch}{\cyri}{\cyrs}{\cyrl}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrt}{\cyro}{\cyrp}{\cyro}{\cyrl}{\cyro}{\cyrg}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrh} {\cyrh}{\cyra}{\cyrr}{\cyra}{\cyrk}{\cyrt}{\cyre}{\cyrr}{\cyri}{\cyrs}{\cyrt}{\cyri}{\cyrk} {\cyrt}{\cyrr}{\cyre}{\cyrh}{\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyrery}{\cyrh} {\cyrt}{\cyre}{\cyrl}},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {523--530},
     year = {2013},
     volume = {53},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a2/}
}
TY  - JOUR
AU  - Ya. V. Bazaikin
AU  - I. A. Taimanov
TI  - Об одном численном алгоритме вычисления топологических характеристик трехмерных тел
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 523
EP  - 530
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a2/
LA  - ru
ID  - ZVMMF_2013_53_4_a2
ER  - 
%0 Journal Article
%A Ya. V. Bazaikin
%A I. A. Taimanov
%T Об одном численном алгоритме вычисления топологических характеристик трехмерных тел
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 523-530
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a2/
%G ru
%F ZVMMF_2013_53_4_a2
Ya. V. Bazaikin; I. A. Taimanov. Об одном численном алгоритме вычисления топологических характеристик трехмерных тел. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 523-530. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a2/

[1] Edelsbrunner H., Harer J., Zomorodian A. J., “Hierarchical Morse-smale complexes for piecewise linear 2-manifolds”, AMC Symposium on Comput. Geometry, Discrete Comput. Geom., 30:1 (2003), 87–107 | DOI | MR | Zbl

[2] Kaczynski T., Mischaikow K., Mrozek M., Computational Homology, Appl. Math. Sci. Series, 157, Springer, New York, 2004 | MR | Zbl

[3] Zomorodian Afra J., Topology for computing, Cambridge University Press, 2005 | MR | Zbl

[4] Mors M., Variatsionnoe ischislenie v tselom, IKI, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010

[5] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[6] Forman R., “Morse theory for cell complexes”, Advances in Math., 134 (1998), 90–145 | DOI | MR | Zbl

[7] Allili M., Corriveau D., Derivi'ere S. et al., “Discrete dynamical system framework for construction of connections between critical regions in lattice height data”, J. Math. Imaging and Vision, 28:2 (2007), 99–111 | DOI | MR

[8] Corriveau D., Allili M., Ziou D., “Morse connections graph for shape representation”, Advanc. Concepts for Intelligent Vision Systems, Lect. Notes in Comput. Sci., 3708, 2005, 219–226 | DOI

[9] Gyulassy A., Bremer P.-T., Hamann B., Pascucci V., “A practical approach to morse-smale complex computation: scalability and generality”, IEEE Trans. Vis. Comput Graph., 14:6 (2008), 1619–1626 | DOI

[10] De Floriani L., Mesmoudi M. M., Donovaro E., “Extraction of critical nets based on a discrete gradient vector field”, Geometric Algorithms and Visibility, Eurographics 2002 https://diglib.eg.org/EG/DL/Conf/EG2002/short/short86.pdf

[11] Chen L., Rong Y., “Digital topological method for computing genus and the Betti numbers”, Topology and its Appl., 157 (2010), 1931–1936 | DOI | MR | Zbl

[12] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR