@article{ZVMMF_2013_53_4_a11,
author = {K. N. Volkov},
title = {Implementation and comparison of various approaches to solving coupled thermal analysis problems on unstructured meshes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {656--674},
year = {2013},
volume = {53},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a11/}
}
TY - JOUR AU - K. N. Volkov TI - Implementation and comparison of various approaches to solving coupled thermal analysis problems on unstructured meshes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 656 EP - 674 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a11/ LA - ru ID - ZVMMF_2013_53_4_a11 ER -
%0 Journal Article %A K. N. Volkov %T Implementation and comparison of various approaches to solving coupled thermal analysis problems on unstructured meshes %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 656-674 %V 53 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a11/ %G ru %F ZVMMF_2013_53_4_a11
K. N. Volkov. Implementation and comparison of various approaches to solving coupled thermal analysis problems on unstructured meshes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 656-674. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a11/
[1] Verdicchio J. A., Chew J. W., Hills N. J., Coupled fluid/solid heat transfer computation for turbine discs, ASME Paper No 2001-GT-0123, 2001
[2] Illingworth J., Hills N., Barnes C., 3D fluid-solid heat transfer coupling of an aero-engine preswirl system, ASME Paper No 2005-GT-68939, 2005 | Zbl
[3] Volkov K. N., “Reshenie zadach sopryazhennogo teploobmena i peredacha teplovykh nagruzok mezhdu zhidkostyu i tverdym telom”, Vychisl. metody i programmirovanie, 8:1 (2007), 265–274
[4] Volkov K. N., “Uskorenie resheniya zadach sopryazhennogo teploobmena na nestrukturirovannykh setkakh”, Vychisl. metody i programmirovanie, 10:1 (2009), 184–201
[5] Sun Z., Chew J. W., Hills N. J., Volkov K. N., Barnes C. J., “Efficient finite element analysis/computational fluid dynamics thermal coupling for engineering applications”, J. Turbomachinery, 132:3 (2010), 031016 | DOI
[6] Volkov K. N., Emelyanov V. N., Techeniya i teploobmen v kanalakh i vraschayuschikhsya polostyakh, Fizmatlit, M., 2010
[7] Brandt A., “Guide to multigrid development”, Lecture Notes in Mathematics, 960, 1982, 220–312 | DOI | MR | Zbl
[8] Volkov K. N., “Mnogosetochnye tekhnologii dlya resheniya zadach gazovoi dinamiki na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matemat. fiz., 50:11 (2010), 1938–1952 | MR | Zbl
[9] Zhang J., “Preconditioned Krylov subspace methods for solving nonsymmetric matrices from CFD applications”, Comput. Meth. Appl. Mech. and Engng., 189:3 (2000), 825–840 | DOI | MR | Zbl
[10] Crivellini A., Bassi F., “An implicit matrix-free discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations”, Computers and Fluids, 50:1 (2011), 81–93 | DOI | MR
[11] Landmann B., Kessler M., Wagner S., Kramer E., “A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows”, Computers and Fluids, 37:4 (2008), 427–438 | DOI | MR | Zbl
[12] Lucas P., Bijl H., van Zuijlen A. H., “Efficient unsteady high Reynolds number flow computations on unstructured grids”, Computers and Fluids, 39:2 (2010), 271–282 | DOI | MR | Zbl
[13] Diosady L., Darmofal D., “Preconditioning methods for discontinuous Galerkin solutions of the Navier–Stokes equations”, J. Comput. Phys., 228:11 (2009), 3917–3935 | DOI | MR | Zbl
[14] Shahbazi K., Mavriplis D. J., Burgess N. K., “Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations”, J. Comput. Phys., 228:21 (2009), 7917–7940 | DOI | MR | Zbl
[15] Volkov K. N., “Konechno-ob'emnaya diskretizatsiya uravnenii Nave–Stoksa na nestrukturirovannoi setke pri pomoschi raznostnykh skhem povyshennoi razreshayuschei sposobnosti”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1250–1273 | MR
[16] Volkov K. N., “Blochnoe predobuslovlivanie uravnenii Eilera i Nave–Stoksa pri modelirovanii nizkoskorostnykh techenii na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matem. fiz., 49:10 (2009), 1868–1884 | MR | Zbl
[17] Zienkiewicz O. C., The finite element method in engineering science, McGraw-Hill Education, London, 1977 | MR | Zbl
[18] Saad Y., Iterative methods for sparse linear systems, SIAM, 2003 | MR
[19] Barth T. J., Linton S. W., An unstructured mesh Newton solver for compressible fluid flow and its parallel implementation, AIAA Paper No 95-0221, 1995
[20] Knoll D. A., Keyes D. E., “Jacobian-free Newton–Krylov methods: a survey of approaches and applications”, J. Comput. Phys., 193:2 (2004), 357–397 | DOI | MR | Zbl
[21] Rasetarinera P., Hussaini M. Y., “An efficient implicit discontinuous Galerkin method”, J. Comput. Phys., 172:2 (2001), 718–738 | DOI | Zbl
[22] Volkov K. N., “Vliyanie gradienta davleniya i lokalizovannogo vduva na turbulentnyi teploobmen ploskoi plastiny”, Teplofizika vysokikh temperatur, 44:3 (2006), 24–32
[23] Teekaram A. J. H., Forth C. J. P., Jones T. V., “Film cooling in the presence of mainstream pressure gradients”, J. Turbomachinery, 113:3 (1991), 484–492 | DOI
[24] Barnes C., Integration test plan for the SC03 plug-in SC89, Rolls-Royce Technical Design Report No DNS99645, 2004