Implementation and comparison of various approaches to solving coupled thermal analysis problems on unstructured meshes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 656-674 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The features of a simplified approach to coupled thermal analysis problems as based on the integration of the energy equation for a viscous compressible gas are discussed. The gas velocity field is assumed to be frozen, and a single iteration is run to update it at each step of the coupling procedure. The equation describing the temperature distribution in a solid is discretized using the finite element method, while the Navier-Stokes equations describing the velocity and gas temperature distributions are discretized using the finite-volume method. The system of difference equations resulting from the finite-volume discretization is solved by applying a multigrid method and the generalized minimal residual method. The capabilities of the approaches developed are demonstrated by solving several model problems. The accelerations of the computational algorithm obtained with the use of the full and simplified approaches to the solution of the problem and various methods for solving the system of difference equations are compared.
@article{ZVMMF_2013_53_4_a11,
     author = {K. N. Volkov},
     title = {Implementation and comparison of various approaches to solving coupled thermal analysis problems on unstructured meshes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {656--674},
     year = {2013},
     volume = {53},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a11/}
}
TY  - JOUR
AU  - K. N. Volkov
TI  - Implementation and comparison of various approaches to solving coupled thermal analysis problems on unstructured meshes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 656
EP  - 674
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a11/
LA  - ru
ID  - ZVMMF_2013_53_4_a11
ER  - 
%0 Journal Article
%A K. N. Volkov
%T Implementation and comparison of various approaches to solving coupled thermal analysis problems on unstructured meshes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 656-674
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a11/
%G ru
%F ZVMMF_2013_53_4_a11
K. N. Volkov. Implementation and comparison of various approaches to solving coupled thermal analysis problems on unstructured meshes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 656-674. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a11/

[1] Verdicchio J. A., Chew J. W., Hills N. J., Coupled fluid/solid heat transfer computation for turbine discs, ASME Paper No 2001-GT-0123, 2001

[2] Illingworth J., Hills N., Barnes C., 3D fluid-solid heat transfer coupling of an aero-engine preswirl system, ASME Paper No 2005-GT-68939, 2005 | Zbl

[3] Volkov K. N., “Reshenie zadach sopryazhennogo teploobmena i peredacha teplovykh nagruzok mezhdu zhidkostyu i tverdym telom”, Vychisl. metody i programmirovanie, 8:1 (2007), 265–274

[4] Volkov K. N., “Uskorenie resheniya zadach sopryazhennogo teploobmena na nestrukturirovannykh setkakh”, Vychisl. metody i programmirovanie, 10:1 (2009), 184–201

[5] Sun Z., Chew J. W., Hills N. J., Volkov K. N., Barnes C. J., “Efficient finite element analysis/computational fluid dynamics thermal coupling for engineering applications”, J. Turbomachinery, 132:3 (2010), 031016 | DOI

[6] Volkov K. N., Emelyanov V. N., Techeniya i teploobmen v kanalakh i vraschayuschikhsya polostyakh, Fizmatlit, M., 2010

[7] Brandt A., “Guide to multigrid development”, Lecture Notes in Mathematics, 960, 1982, 220–312 | DOI | MR | Zbl

[8] Volkov K. N., “Mnogosetochnye tekhnologii dlya resheniya zadach gazovoi dinamiki na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matemat. fiz., 50:11 (2010), 1938–1952 | MR | Zbl

[9] Zhang J., “Preconditioned Krylov subspace methods for solving nonsymmetric matrices from CFD applications”, Comput. Meth. Appl. Mech. and Engng., 189:3 (2000), 825–840 | DOI | MR | Zbl

[10] Crivellini A., Bassi F., “An implicit matrix-free discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations”, Computers and Fluids, 50:1 (2011), 81–93 | DOI | MR

[11] Landmann B., Kessler M., Wagner S., Kramer E., “A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows”, Computers and Fluids, 37:4 (2008), 427–438 | DOI | MR | Zbl

[12] Lucas P., Bijl H., van Zuijlen A. H., “Efficient unsteady high Reynolds number flow computations on unstructured grids”, Computers and Fluids, 39:2 (2010), 271–282 | DOI | MR | Zbl

[13] Diosady L., Darmofal D., “Preconditioning methods for discontinuous Galerkin solutions of the Navier–Stokes equations”, J. Comput. Phys., 228:11 (2009), 3917–3935 | DOI | MR | Zbl

[14] Shahbazi K., Mavriplis D. J., Burgess N. K., “Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations”, J. Comput. Phys., 228:21 (2009), 7917–7940 | DOI | MR | Zbl

[15] Volkov K. N., “Konechno-ob'emnaya diskretizatsiya uravnenii Nave–Stoksa na nestrukturirovannoi setke pri pomoschi raznostnykh skhem povyshennoi razreshayuschei sposobnosti”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1250–1273 | MR

[16] Volkov K. N., “Blochnoe predobuslovlivanie uravnenii Eilera i Nave–Stoksa pri modelirovanii nizkoskorostnykh techenii na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matem. fiz., 49:10 (2009), 1868–1884 | MR | Zbl

[17] Zienkiewicz O. C., The finite element method in engineering science, McGraw-Hill Education, London, 1977 | MR | Zbl

[18] Saad Y., Iterative methods for sparse linear systems, SIAM, 2003 | MR

[19] Barth T. J., Linton S. W., An unstructured mesh Newton solver for compressible fluid flow and its parallel implementation, AIAA Paper No 95-0221, 1995

[20] Knoll D. A., Keyes D. E., “Jacobian-free Newton–Krylov methods: a survey of approaches and applications”, J. Comput. Phys., 193:2 (2004), 357–397 | DOI | MR | Zbl

[21] Rasetarinera P., Hussaini M. Y., “An efficient implicit discontinuous Galerkin method”, J. Comput. Phys., 172:2 (2001), 718–738 | DOI | Zbl

[22] Volkov K. N., “Vliyanie gradienta davleniya i lokalizovannogo vduva na turbulentnyi teploobmen ploskoi plastiny”, Teplofizika vysokikh temperatur, 44:3 (2006), 24–32

[23] Teekaram A. J. H., Forth C. J. P., Jones T. V., “Film cooling in the presence of mainstream pressure gradients”, J. Turbomachinery, 113:3 (1991), 484–492 | DOI

[24] Barnes C., Integration test plan for the SC03 plug-in SC89, Rolls-Royce Technical Design Report No DNS99645, 2004