Linear chaotic resonance in vortex motion
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 639-655
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              For three-dimensional vortex motion, a linear mathematical model with random coefficients is considered, and formulas for the first two moment functions of solutions are derived. The conditions are found under which a linear chaotic resonance occurs; i.e., the mean angular velocity of the motion increases. The results show that the energy of the vortex increases because of the chaotic motions present in the flow.
            
            
            
          
        
      @article{ZVMMF_2013_53_4_a10,
     author = {V. G. Zadorozhniy},
     title = {Linear chaotic resonance in vortex motion},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {639--655},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a10/}
}
                      
                      
                    V. G. Zadorozhniy. Linear chaotic resonance in vortex motion. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 639-655. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a10/
