Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 507-519 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems is studied. A feature of two-phase methods is that the criteria images of randomly generated points of the decision space approach the Pareto frontier via local optimization of adaptively chosen convolutions of criteria. It is shown that the convergence rate of two-phase methods is determined by the metric properties of the set of local extrema of criteria convolutions, specifically, by its upper metric dimension. The efficiency of two-phase methods is examined; i.e., they are compared with hypothetical optimal methods of the same class. It is shown that the efficiency of two-phase methods is determined by the ratio of the $\varepsilon$-entropy and $\varepsilon$-capacity for the set of local extrema of criteria convolutions.
@article{ZVMMF_2013_53_4_a0,
     author = {G. K. Kamenev},
     title = {Study of convergence rate and efficiency of two-phase methods for approximating the {Edgeworth{\textendash}Pareto} hull},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {507--519},
     year = {2013},
     volume = {53},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a0/}
}
TY  - JOUR
AU  - G. K. Kamenev
TI  - Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 507
EP  - 519
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a0/
LA  - ru
ID  - ZVMMF_2013_53_4_a0
ER  - 
%0 Journal Article
%A G. K. Kamenev
%T Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 507-519
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a0/
%G ru
%F ZVMMF_2013_53_4_a0
G. K. Kamenev. Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 507-519. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a0/

[1] Evtushenko Yu. G., Potapov M. A., “Metody chislennogo resheniya mnogokriterialnykh zadach”, Dokl. AN SSSR, 291 (1986), 25–29 | MR | Zbl

[2] Shtoier R., Mnogokriterialnaya optimizatsiya, Radio i svyaz, M., 1992 | MR

[3] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997

[4] Miettinen K., Nonlinear multiobjective optimization, Kluwer, Boston, 1999 | MR

[5] Lotov A., Bushenkov V., Kamenev G., Feasible Goals Method. Search for Smart Decisions, VTs RAN, M., 2001

[6] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive Decision Maps. Approximation and Visualization of Pareto Frontier, Kluwer, Boston, 2004 | MR | Zbl

[7] Lotov A. V., Pospelova I. I., Mnogokriterialnye zadachi prinyatiya reshenii, Maks Press, M., 2008

[8] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2007 | MR

[9] Lotov A. V., Kamenev G. K., Berezkin V. E., “Approksimatsiya i vizualizatsiya Paretovoi granitsy dlya nevypuklykh mnogokriterialnykh zadach”, Dokl. AN, 386:6 (2002), 738–741 | MR | Zbl

[10] Berezkin V. E., Kamenev G. K., Lotov A. V., “Gibridnye adaptivnye metody approksimatsii nevypukloi mnogomernoi paretovoi granitsy”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2009–2023 | MR

[11] Kamenev G. K., Kondratev D. L., “Ob odnom metode issledovaniya nezamknutykh nelineinykh modelei”, Matem. modelirovanie, 1992, no. 3, 105–118 | MR | Zbl

[12] Kamenev G. K., “Approksimatsiya vpolne ogranichennykh mnozhestv metodom glubokikh yam”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1751–1760 | MR | Zbl

[13] Kamenev G. K., “Issledovanie adaptivnogo odnofaznogo metoda approksimatsii mnogomernoi granitsy Pareto v nelineinykh sistemakh”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2103–2113 | MR

[14] Berezkin V. E., Kamenev G. K., “Issledovanie skhodimosti dvukhfaznykh metodov approksimatsii obolochki Edzhvorta–Pareto v nelineinykh zadachakh mnogokriterialnoi optimizatsii”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 990–998 | Zbl

[15] Kolmogorov A. N., Tikhomirov V. M., “$E$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR | Zbl

[16] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968 | MR

[17] Conway J. H., Sloane N. J. A., Sphere packings, lattices and groups, Springer, Berlin, 1999 | MR

[18] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR