@article{ZVMMF_2013_53_4_a0,
author = {G. K. Kamenev},
title = {Study of convergence rate and efficiency of two-phase methods for approximating the {Edgeworth{\textendash}Pareto} hull},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {507--519},
year = {2013},
volume = {53},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a0/}
}
TY - JOUR AU - G. K. Kamenev TI - Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 507 EP - 519 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a0/ LA - ru ID - ZVMMF_2013_53_4_a0 ER -
%0 Journal Article %A G. K. Kamenev %T Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 507-519 %V 53 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a0/ %G ru %F ZVMMF_2013_53_4_a0
G. K. Kamenev. Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 4, pp. 507-519. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_4_a0/
[1] Evtushenko Yu. G., Potapov M. A., “Metody chislennogo resheniya mnogokriterialnykh zadach”, Dokl. AN SSSR, 291 (1986), 25–29 | MR | Zbl
[2] Shtoier R., Mnogokriterialnaya optimizatsiya, Radio i svyaz, M., 1992 | MR
[3] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[4] Miettinen K., Nonlinear multiobjective optimization, Kluwer, Boston, 1999 | MR
[5] Lotov A., Bushenkov V., Kamenev G., Feasible Goals Method. Search for Smart Decisions, VTs RAN, M., 2001
[6] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive Decision Maps. Approximation and Visualization of Pareto Frontier, Kluwer, Boston, 2004 | MR | Zbl
[7] Lotov A. V., Pospelova I. I., Mnogokriterialnye zadachi prinyatiya reshenii, Maks Press, M., 2008
[8] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2007 | MR
[9] Lotov A. V., Kamenev G. K., Berezkin V. E., “Approksimatsiya i vizualizatsiya Paretovoi granitsy dlya nevypuklykh mnogokriterialnykh zadach”, Dokl. AN, 386:6 (2002), 738–741 | MR | Zbl
[10] Berezkin V. E., Kamenev G. K., Lotov A. V., “Gibridnye adaptivnye metody approksimatsii nevypukloi mnogomernoi paretovoi granitsy”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2009–2023 | MR
[11] Kamenev G. K., Kondratev D. L., “Ob odnom metode issledovaniya nezamknutykh nelineinykh modelei”, Matem. modelirovanie, 1992, no. 3, 105–118 | MR | Zbl
[12] Kamenev G. K., “Approksimatsiya vpolne ogranichennykh mnozhestv metodom glubokikh yam”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1751–1760 | MR | Zbl
[13] Kamenev G. K., “Issledovanie adaptivnogo odnofaznogo metoda approksimatsii mnogomernoi granitsy Pareto v nelineinykh sistemakh”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2103–2113 | MR
[14] Berezkin V. E., Kamenev G. K., “Issledovanie skhodimosti dvukhfaznykh metodov approksimatsii obolochki Edzhvorta–Pareto v nelineinykh zadachakh mnogokriterialnoi optimizatsii”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 990–998 | Zbl
[15] Kolmogorov A. N., Tikhomirov V. M., “$E$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR | Zbl
[16] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968 | MR
[17] Conway J. H., Sloane N. J. A., Sphere packings, lattices and groups, Springer, Berlin, 1999 | MR
[18] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR