Numerical simulation of shear layer instability using a scheme with ninth-order multioperator approximations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 417-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For equations with convective terms, a difference scheme is described based on ninth-order multioperator approximations. Its optimization aimed at achieving a high resolution of small scales of solutions is discussed. The scheme is applied to test problems, and shear layer instability is numerically simulated with a detailed analysis of developing vortex structures and their characteristics.
@article{ZVMMF_2013_53_3_a9,
     author = {M. V. Lipavskii and A. I. Tolstykh and E. N. Chigerev},
     title = {Numerical simulation of shear layer instability using a scheme with ninth-order multioperator approximations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {417--432},
     year = {2013},
     volume = {53},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a9/}
}
TY  - JOUR
AU  - M. V. Lipavskii
AU  - A. I. Tolstykh
AU  - E. N. Chigerev
TI  - Numerical simulation of shear layer instability using a scheme with ninth-order multioperator approximations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 417
EP  - 432
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a9/
LA  - ru
ID  - ZVMMF_2013_53_3_a9
ER  - 
%0 Journal Article
%A M. V. Lipavskii
%A A. I. Tolstykh
%A E. N. Chigerev
%T Numerical simulation of shear layer instability using a scheme with ninth-order multioperator approximations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 417-432
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a9/
%G ru
%F ZVMMF_2013_53_3_a9
M. V. Lipavskii; A. I. Tolstykh; E. N. Chigerev. Numerical simulation of shear layer instability using a scheme with ninth-order multioperator approximations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 417-432. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a9/

[1] Brown D. L., Minion M. L., “Performance of under-resorved two-dimensional incompressible flow simulations”, J. Comput. Phys., 122 (1995), 165–183 | DOI | MR | Zbl

[2] Minion M. L., Brown D. L., “Performance of under-resorved two-dimensional incompressible flow simulations, II”, J. Comput. Phys., 138 (1997), 734–765 | DOI | MR | Zbl

[3] Tolstykh A. I., Chigirev E. N., “On thin shear layers numerical simulation”, J. Comput. Phys., 166 (2001), 152–158 | DOI | Zbl

[4] Tolstykh A. I., “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. AN, 366:3 (1999), 319–322 | MR | Zbl

[5] Tolstykh A. I., “O postroenii skhem zadannogo poryadka s lineinymi kombinatsiyami operatorov”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1206–1220 | MR | Zbl

[6] Tolstykh A. I., “O multioperatornom metode postroeniya approksimatsii i skhem proizvolno vysokogo poryadka”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 56–73 | MR | Zbl

[7] Tolstykh A. I., “Development of arbitrary-order multioperators-based schemes for parallel calculations. 1: Higher-than-fifth-order approximations to convection terms”, J. Comput. Phys., 225 (2007), 2333–2353 | DOI | MR | Zbl

[8] Lipavskii M. V., Tolstykh A. I., Chigerëv E. N., “O skheme s multioperatornymi approksimatsiyami 9-go poryadka dlya parallelnykh vychislenii i o ee primenenii v zadachakh pryamogo chislennogo modelirovaniya”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1433–1452 | MR

[9] Khairer E., Nërsett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[10] Tam C. K. W., “Problem 1-aliasing”, Fourth Computational Aeroacoustics (CAA) Workshop on benchmark problems; NASA/CP-2004-212954, 2004, 3 pp.

[11] Sandham N. D., Reynolds W. C., “Three-dimensional simulation of large eddies in the compressible mixing layer”, J. Fluid Mech., 224 (1991), 133–158 | DOI | Zbl

[12] Frik P. G., Turbulentnost: podkhody i modeli, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003

[13] Frish U., Turbulentnost. Nasledie A. N. Kolmogorova, Fazis, M., 1998

[14] Lesieur M., Turbulence in Fluids, Kluwer, Dordrecht, 1990 | MR | Zbl