Simulation of coupled heat exchange on unstructured meshes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 396-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author develops computer simulation of coupled heat exchange. Temperature distribution over solid is calculated be finite elements method. Temperature field in viscous compressible gas is calculated by virtue of finite volume method. Boundary conditions at the interface are discussed.
@article{ZVMMF_2013_53_3_a8,
     author = {K. N. Volkov},
     title = {Simulation of coupled heat exchange on unstructured meshes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {396--416},
     year = {2013},
     volume = {53},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a8/}
}
TY  - JOUR
AU  - K. N. Volkov
TI  - Simulation of coupled heat exchange on unstructured meshes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 396
EP  - 416
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a8/
LA  - ru
ID  - ZVMMF_2013_53_3_a8
ER  - 
%0 Journal Article
%A K. N. Volkov
%T Simulation of coupled heat exchange on unstructured meshes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 396-416
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a8/
%G ru
%F ZVMMF_2013_53_3_a8
K. N. Volkov. Simulation of coupled heat exchange on unstructured meshes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 396-416. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a8/

[1] Bohn D., Kruger U., Kusterer K., “Conjugate heat transfer: an advanced computational method for the cooling design of modern gas turbine blades and vanes”, Heat Transfer in Gas Turbine, WIT Press, Southampton, 2001, 58–108

[2] Rigby D. L., Lepicovsky J., Conjugate heat transfer analysis of internally cooled configurations, ASME Paper No 2001-GT-0405, 2001

[3] Okita Y., Yamawaki S., Conjugate heat transfer analysis of turbine rotor-stator systems, ASME Paper No 2002-GT-30615, 2002

[4] Bohn D., Ren J., Kusterer K., Conjugate heat transfer analysis for film cooling configurations with different hole geometries, ASME Paper No 2003-GT-38369, 2003

[5] Kusterer K., Bohn D., Sugimoto T., Tanaka R., Conjugate calculations for a film-cooled blade under different operating conditions, ASME Paper No 2004-GT-53719, 2004

[6] Lewis L. V., Provins J. I., A non-coupled CFD-FE procedure to evaluate windage and heat transfer in rotor-stator cavities, ASME Paper No GT2004-53246, 2004

[7] Saunders K., Alizadeh S., Lewis L. V., Provins J., The use of CFD to generate heat transfer boundary conditions for a rotor-stator cavity in a compressor drum thermal model, ASME Paper No GT2007-28333, 2007

[8] Li H., Kassab A. J., A Coupled FVM/BEM approach to conjugate heat transfer in turbine blades, AIAA Paper No 94-1981, 1994

[9] Verdicchio J. A., Chew J. W., Hills N. J., Coupled fluid/solid heat transfer computation for turbine discs, ASME Paper No 2001-GT-0123, 2001

[10] Mirzamoghadam A. V., Xiao Z., “Flow and heat transfer in an industrial rotor-stator rim sealing cavity”, J. Engng. for Gas Turbines and Power, 124:1 (2002), 125–132 | DOI

[11] Illingworth J., Hills N., Barnes C., 3D fluid-solid heat transfer coupling of an aero-engine preswirl system, ASME Paper No 2005-GT-68939, 2005 | Zbl

[12] Volkov K. N., “Reshenie zadach sopryazhennogo teploobmena i peredacha teplovykh nagruzok mezhdu zhidkostyu i tverdym telom”, Vychisl. metody i programmirovanie, 8:1 (2007), 265–274

[13] Volkov K. N., “Uskorenie resheniya zadach sopryazhennogo teploobmena na nestrukturirovannykh setkakh”, Vychisl. metody i programmirovanie, 10:1 (2009), 184–201

[14] Sun Z., Chew J. W., Hills N. J., Volkov K. N., Barnes C. J., “Efficient finite element analysis/computational fluid dynamics thermal coupling for engineering applications”, J. Turbomachinery, 132:3 (2010), 031016 | DOI

[15] Volkov K. N., Emelyanov V. N., Techeniya i teploobmen v kanalakh i vraschayuschikhsya polostyakh, Fizmatlit, M., 2010

[16] Dixon J. A., Verdicchio J. A., Benito D., Karl A., Tham K. M., “Recent developments in gas turbine component temperature prediction methods, using computational fluid dynamics and optimization tools, in conjunction with more conventional finite element analysis techniques”, Power and Energy, 218:4 (2004), 241–255 | DOI

[17] Zienkiewicz O. C., The finite element method in engineering science, McGraw-Hill Education, London, 1977 | MR | Zbl

[18] Volkov K. N., “Konechno-ob'emnaya diskretizatsiya uravnenii Nave-Stoksa na nestrukturirovannoi setke pri pomoschi metoda kontrolnogo ob'ema i raznostnykh skhem povyshennoi razreshayuschei sposobnosti”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1250–1273 | MR

[19] Barth T. J., Aspects of unstructured grids and finite-volume solvers for the Euler and Navier–Stokes equations, VKI Lecture Series, 1994-05, Von Karman Institute for Fluid Dyanmics, Belgium, 1994

[20] Volkov K. N., “Mnogosetochnye tekhnologii dlya resheniya zadach gazovoi dinamiki na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matem. fiz., 50:11 (2010), 1938–1952 | MR | Zbl

[21] Volkov K. N., “Blochnoe predobuslovlivanie uravnenii Eilera i Nave–Stoksa pri modelirovanii nizkoskorostnykh techenii na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matem. fiz., 49:10 (2009), 1868–1884 | MR | Zbl

[22] Barnes C., Integration test plan for the SC03 plug-in SC89, Rolls-Royce Technical Design Report No DNS99645, 2004