Numerical solution of differential-algebraic equations using the spline collocation-variation method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 377-389 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical methods for solving initial value problems for differential-algebraic equations are proposed. The approximate solution is represented as a continuous vector spline whose coefficients are found using the collocation conditions stated for a subgrid with the number of collocation points less than the degree of the spline and the minimality condition for the norm of this spline in the corresponding spaces. Numerical results for some model problems are presented.
@article{ZVMMF_2013_53_3_a6,
     author = {M. V. Bulatov and N. P. Rahvalov and L. S. Solovarova},
     title = {Numerical solution of differential-algebraic equations using the spline collocation-variation method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {377--389},
     year = {2013},
     volume = {53},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a6/}
}
TY  - JOUR
AU  - M. V. Bulatov
AU  - N. P. Rahvalov
AU  - L. S. Solovarova
TI  - Numerical solution of differential-algebraic equations using the spline collocation-variation method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 377
EP  - 389
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a6/
LA  - ru
ID  - ZVMMF_2013_53_3_a6
ER  - 
%0 Journal Article
%A M. V. Bulatov
%A N. P. Rahvalov
%A L. S. Solovarova
%T Numerical solution of differential-algebraic equations using the spline collocation-variation method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 377-389
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a6/
%G ru
%F ZVMMF_2013_53_3_a6
M. V. Bulatov; N. P. Rahvalov; L. S. Solovarova. Numerical solution of differential-algebraic equations using the spline collocation-variation method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 377-389. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a6/

[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[2] Bock H. G., Schloder J. P., Schulz V. H., Differential-Algebraic equations and their connections to optimization, Preprint 96-58 (SFB 359), Heidelberg, 1996

[3] Dikusar V. V., Koshka M., Figura A., Metody prodolzheniya reshenii v prikladnykh zadachakh optimalnogo upravleniya, MFTI, M., 2001

[4] Boyarintsev Yu. E., Regulyarnye i singulyarnye sistemy lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, Novosibirsk, 1980 | MR | Zbl

[5] Brenan K. E., Campbell S. L., Petzold L. R., Numerical solution of initial-value Ppoblems in differential-algebraic equations, SIAM, Philadelphia, 1996 | MR | Zbl

[6] Balyshev O. A., Tairov E. A., Analiz perekhodnykh i statsionarnykh protsessov v truboprovodnykh sistemakh (teoreticheskie i eksperimentalnye aspekty), Nauka, Novosibirsk, 1998

[7] Ushakov E. I., Staticheskaya ustoichivost elektricheskikh sistem, Nauka, Novosibirsk, 1988 | Zbl

[8] Vlakh I., Singkhal K., Mashinnye metody analiza i proektirovaniya elektronnykh skhem, Radio i svyaz, M., 1988

[9] Hairer E., Lubich C., Roche M., The numerical solution of differential-algebraic equations by Runge–Kutta methods, Springer, Berlin, 1989 | MR

[10] Griepentrog E., März R., Differential-algebraic equations and their numerical treatment, Teubner Texte zur Math., 88, 1986 | MR | Zbl

[11] Bulatov M. V., “O preobrazovanii algebro-differentsialnykh sistem uravnenii”, Zh. vychisl. matem. i matem. fiz., 34:3 (1994), 360–372 | MR | Zbl

[12] Chistyakov V. F., O rasshirenii lineinykh sistem, ne razreshennykh otnositelno proizvodnykh, Preprint No 5, IrVTs SO AN SSSR, Irkutsk, 1986 | MR

[13] Campbell S. L., “Non-BDF methods for the solution of linear time varying implicit differential equations”, Proc. Amer. Contr. Conf. (San Diego, California, 5–6 June, 1984), v. 4, 1315–1318

[14] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996 | MR

[15] Gorbunov V. K., Martynenko Yu. V., “Metod variatsionnykh splainov dlya neyavnykh differentsialnykh uravnenii”, Vestn. Samarskogo gos. tekhn. un-ta: Seriya “Matematicheskaya”, 2007, no. 2 (6), 16–28 | MR | Zbl

[16] Gorbunov V. K., Petrischev V. V., “Razvitie metoda normalnoi splain-kollokatsii dlya lineinykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 43:8 (2003), 1161–1170 | MR

[17] Gorbunov V. K., Sviridov V. Yu., “The method of normal splines for linear DAEs on the number semi-axis”, Appl. Numer. Math., 59:3–4 (2009), 656–670 | DOI | MR

[18] Kunkel P., Mehrmann V., “Stability properties of differential-algebraic equations and spin-stabilized diskretizations”, Electr. Trans. Numer. Analys., 26 (2007), 385–420 | MR | Zbl

[19] März R., “Differental-algeraic systems anew”, Appl. Numer. Math., 42 (2002), 315–335 | DOI | MR

[20] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl

[21] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1977 | MR | Zbl

[22] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1978 | Zbl

[23] Bulatov M. V., Ming-Gong Li, “Primenenie matrichnykh polinomov k issledovaniyu lineinykh differentsialno-algebraicheskikh uravnenii vysokogo poryadka”, Differents. ur-niya, 44:9 (2008), 1299–1306 | MR