Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 365-376
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a singularly perturbed parabolic equation termed in applications as the reaction-diffusion-advection equation, stationary solutions with internal transition layers (contrast structures) are studied. An arbitrary-order asymptotic approximation of such solutions is constructed, and an existence theorem is proved. An efficient algorithm for constructing an asymptotic approximation of the transition point is proposed. The constructed asymptotic approximation is justified by applying the asymptotic method of differential inequalities, which is extended to the class of problems under study. This method is also used to establish the Lyapunov stability of such stationary solutions.
@article{ZVMMF_2013_53_3_a5,
     author = {N. T. Levashova and N. N. Nefedov and A. V. Yagremtsev},
     title = {Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {365--376},
     year = {2013},
     volume = {53},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a5/}
}
TY  - JOUR
AU  - N. T. Levashova
AU  - N. N. Nefedov
AU  - A. V. Yagremtsev
TI  - Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 365
EP  - 376
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a5/
LA  - ru
ID  - ZVMMF_2013_53_3_a5
ER  - 
%0 Journal Article
%A N. T. Levashova
%A N. N. Nefedov
%A A. V. Yagremtsev
%T Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 365-376
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a5/
%G ru
%F ZVMMF_2013_53_3_a5
N. T. Levashova; N. N. Nefedov; A. V. Yagremtsev. Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 365-376. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a5/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990 | MR

[2] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. ur-niya, 31:7 (1995), 1142–1149 | MR | Zbl

[3] Vasileva A. B., Plotnikov A. A., Asimptoticheskaya teoriya singulyarno vozmuschennykh zadach, Izd-vo MGU, M., 2008

[4] Volkov V. T., Nefedov N. N., “Razvitie asimptoticheskogo metoda differentsialnykh neravenstv dlya issledovaniya periodicheskikh kontrastnykh struktur v uravneniyakh reaktsiya–diffuziya”, Zh. vychisl. matem. i matem. fiz., 46:4 (2006), 615–623 | MR | Zbl

[5] Nefedov N. N., “Obschaya skhema asimptoticheskogo issledovaniya ustoichivykh kontrastnykh struktur”, Nelineinaya dinamika, 6:1 (2010), 181–186 | MR

[6] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Singulyarno vozmuschennye zadachi s pogranichnymi sloyami”, Tr. MIAN, 268, 2010, 268–283 | MR

[7] Pao C. V., Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992 | MR