@article{ZVMMF_2013_53_3_a4,
author = {A. A. Ivanov and Ya. Sh. Il'yasov},
title = {Finding bifurcations for solutions of nonlinear equations by quadratic programming methods},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {350--364},
year = {2013},
volume = {53},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a4/}
}
TY - JOUR AU - A. A. Ivanov AU - Ya. Sh. Il'yasov TI - Finding bifurcations for solutions of nonlinear equations by quadratic programming methods JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 350 EP - 364 VL - 53 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a4/ LA - ru ID - ZVMMF_2013_53_3_a4 ER -
%0 Journal Article %A A. A. Ivanov %A Ya. Sh. Il'yasov %T Finding bifurcations for solutions of nonlinear equations by quadratic programming methods %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 350-364 %V 53 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a4/ %G ru %F ZVMMF_2013_53_3_a4
A. A. Ivanov; Ya. Sh. Il'yasov. Finding bifurcations for solutions of nonlinear equations by quadratic programming methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 350-364. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a4/
[1] Doedel E. J., Keller H. V., Kernevez J. P., “Numerical analysis and control of bifurcation problems: Bifurcation in infinite dimensions”, Int. J. Bifurcation and Chaos, 1:4 (1991), 745–772 | DOI | MR | Zbl
[2] Keller H. B., “Numerical solution of bifurcation and nonlinear eigenvalue problems”, Appl. bifurcation theory, Proc. adv. Semin. (Madison/Wis. 1976), 1977, 359–384 | MR | Zbl
[3] Seydel R., Practical bifurcation and stability analysis, Interdisciplinary Applied Mathematics, 5, 3rd ed., Springer, New York, 2009 | MR
[4] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh integralnykh uravnenii, Nauka, M., 1969 | MR
[5] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR
[6] Rabinowitz P. H., “Some global results for nonlinear eigenvalue problems”, J. Funct. Anal., 1971, no. 7, 487–513 | DOI | MR | Zbl
[7] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl
[8] Dancer E. N., “On the structure of solutions of non-linear eigenvalue problems”, Ind. Univ. Math. J., 1974, no. 3, 1069–1076 | DOI | MR | Zbl
[9] Keller H. B., Lectures on numerical methods in bifurcation problems, Springer, Berlin, 1987 | MR
[10] Kuznetsov Yu. A., Elements of applied bifurcation theory, Applied mathematical sciences, 112, Springer, New York, 1995/1998 | DOI | MR | Zbl
[11] Abbott J. P., Numerical continuation methods for nonlinear equations and bifurcation problems, Ph. D. Thesis, Australian National University, Canberra, 1977
[12] Riks E., “Application of Newton's method to the problem of elastic stability”, J. Appl. Mech., Trans. ASME, 1972, no. 39, 1060–1065 | DOI | Zbl
[13] Seydel R., Numerische bereehnung von verzweigungen boi gewohnlichen differentialgleichungen, Ph. D. Thesis, 1977 | Zbl
[14] Ilyasov Ya. Sh., “Ischislenie bifurkatsii metodom prodolzhennogo funktsionala”, Funkts. analiz i ego prilozh., 41:1 (2007), 23–38 | DOI | MR
[15] Il'yasov Y. Sh., Runst T., “Positive solutions of indefinite equations with p-Laplacian and supercritical nonlinearity”, Complex Var. Elliptic Equ., 56:10–11, 945–954 | MR
[16] Il'yasov Y., “A duality principle corresponding to the parabolic equations”, Physica D, 2370:50 (2008), 692–698 | DOI | MR
[17] Lubyshev V., “Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem”, Commun. Pure Appl. Anal., 8:3 (2009), 999–1018 | DOI | MR | Zbl
[18] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972 | MR
[19] Demyanov V. F., Stavroulakis G. E., Polyakova L. N., Panagiotopoulos P. D., Quasidiffercntiability and nonsmooth modelling in mechanics, engineering and economics, Kluwer, London, 1996 | MR
[20] Cabre X., “Extremal solutions and instantaneous complete blow-up for elliptic and parabolic problems”, Contemporary Math., 446, 2007, 159–174 | DOI | MR
[21] Bertsekas D. P., Nonlinear programming, II-d ed., Athena Scientific, 1999 | Zbl
[22] Fletcher R., Practical methods of optimization, New York, 2000 | MR
[23] Ambrosetti A., Brezis H., Cerami G., “Combined effect of concave and convex nonlinearities in some elliptic problems”, J. Funct. Anal., 122 (1994), 519–543 | DOI | MR | Zbl
[24] Godunov S. K., Ryabenkii V. S., Vvedenie v teoriyu raznostnykh skhem, Fizmatgiz, M., 1962 | MR