Two algorithms for finding the projection of a point onto a nonconvex set in a normed space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 344-349 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two iteration algorithms are proposed for finding the projection of a point onto a nonconvex set in a normed space, which is given by $f(x) = 0$ equation. For the first case the left hand side of this equation is supposed to satisfy the subordination condition, which generalizes the Lipshitz condition. For the second casethe continuity of $f$ function is supposed and an approximate algorithm of projection is constructed.
@article{ZVMMF_2013_53_3_a3,
     author = {V. I. Zabotin and N. K. Arutyunova},
     title = {Two algorithms for finding the projection of a point onto a nonconvex set in a normed space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {344--349},
     year = {2013},
     volume = {53},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a3/}
}
TY  - JOUR
AU  - V. I. Zabotin
AU  - N. K. Arutyunova
TI  - Two algorithms for finding the projection of a point onto a nonconvex set in a normed space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 344
EP  - 349
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a3/
LA  - ru
ID  - ZVMMF_2013_53_3_a3
ER  - 
%0 Journal Article
%A V. I. Zabotin
%A N. K. Arutyunova
%T Two algorithms for finding the projection of a point onto a nonconvex set in a normed space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 344-349
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a3/
%G ru
%F ZVMMF_2013_53_3_a3
V. I. Zabotin; N. K. Arutyunova. Two algorithms for finding the projection of a point onto a nonconvex set in a normed space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 344-349. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a3/

[1] Dulliev A. M., Zabotin V. I., “Iteratsionnyi algoritm proektirovaniya tochki na nevypukloe mnogoobrazie v lineinom normirovannom prostranstve”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 827–830 | MR | Zbl

[2] Piyavskii S. A., “Odin algoritm otyskaniya absolyutnogo ekstremuma funktsii”, Zh. vychisl. matem. i matem. fiz., 12:4 (1972), 888–896

[3] Sergeev Ya. D., Famularo D., Pugliese P., “Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints”, J. Global Optimiz., 21:3 (2001), 317–341 | DOI | MR

[4] Vanderbei R. J., “Extension of Piyavskii's algorithm to continuous global optimization”, J. Global Optimization, 14:2 (1999), 205–216 | DOI | MR | Zbl