Two algorithms for finding the projection of a point onto a nonconvex set in a normed space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 344-349
Cet article a éte moissonné depuis la source Math-Net.Ru
Two iteration algorithms are proposed for finding the projection of a point onto a nonconvex set in a normed space, which is given by $f(x) = 0$ equation. For the first case the left hand side of this equation is supposed to satisfy the subordination condition, which generalizes the Lipshitz condition. For the second casethe continuity of $f$ function is supposed and an approximate algorithm of projection is constructed.
@article{ZVMMF_2013_53_3_a3,
author = {V. I. Zabotin and N. K. Arutyunova},
title = {Two algorithms for finding the projection of a point onto a nonconvex set in a normed space},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {344--349},
year = {2013},
volume = {53},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a3/}
}
TY - JOUR AU - V. I. Zabotin AU - N. K. Arutyunova TI - Two algorithms for finding the projection of a point onto a nonconvex set in a normed space JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 344 EP - 349 VL - 53 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a3/ LA - ru ID - ZVMMF_2013_53_3_a3 ER -
%0 Journal Article %A V. I. Zabotin %A N. K. Arutyunova %T Two algorithms for finding the projection of a point onto a nonconvex set in a normed space %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 344-349 %V 53 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a3/ %G ru %F ZVMMF_2013_53_3_a3
V. I. Zabotin; N. K. Arutyunova. Two algorithms for finding the projection of a point onto a nonconvex set in a normed space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 344-349. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a3/
[1] Dulliev A. M., Zabotin V. I., “Iteratsionnyi algoritm proektirovaniya tochki na nevypukloe mnogoobrazie v lineinom normirovannom prostranstve”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 827–830 | MR | Zbl
[2] Piyavskii S. A., “Odin algoritm otyskaniya absolyutnogo ekstremuma funktsii”, Zh. vychisl. matem. i matem. fiz., 12:4 (1972), 888–896
[3] Sergeev Ya. D., Famularo D., Pugliese P., “Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints”, J. Global Optimiz., 21:3 (2001), 317–341 | DOI | MR
[4] Vanderbei R. J., “Extension of Piyavskii's algorithm to continuous global optimization”, J. Global Optimization, 14:2 (1999), 205–216 | DOI | MR | Zbl