Generalized symmetric accelerated over relaxation method for solving absolute value complementarity problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we suggest and analyze a symmetric accelerated over relaxation (SAOR) method for absolute complementarity problems of finding $x\in R^n$, such that $x\geqslant0$, $Ax-|x|-b\geqslant0$, $\langle x,Ax-|x|-b\rangle=0$, where $A\in R^{n\times n}$ and $b\in R^n$. We discuss the convergence of SAOR method when the system matrix $A$ is an $L$-matrix. Several examples are given to illustrate the implementation and efficiency of the method. The results proved in this paper may stimulate further research in this fascinating and interesting field.
@article{ZVMMF_2013_53_3_a2,
     author = {M. A. Noor and K. I. Noor and Javed Iqbal},
     title = {Generalized symmetric accelerated over relaxation method for solving absolute value complementarity problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {343},
     year = {2013},
     volume = {53},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a2/}
}
TY  - JOUR
AU  - M. A. Noor
AU  - K. I. Noor
AU  - Javed Iqbal
TI  - Generalized symmetric accelerated over relaxation method for solving absolute value complementarity problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 343
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a2/
LA  - en
ID  - ZVMMF_2013_53_3_a2
ER  - 
%0 Journal Article
%A M. A. Noor
%A K. I. Noor
%A Javed Iqbal
%T Generalized symmetric accelerated over relaxation method for solving absolute value complementarity problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 343
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a2/
%G en
%F ZVMMF_2013_53_3_a2
M. A. Noor; K. I. Noor; Javed Iqbal. Generalized symmetric accelerated over relaxation method for solving absolute value complementarity problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a2/

[1] C. E. Lemke, “Bimatrix equilibrium points and mathematical programming”, Manag. Sci., 11 (1965), 681–689 | DOI | MR | Zbl

[2] R. W. Cottle, G. Dantzig, “Complementary pivot theory of mathematical programming”, Lin. Alg. Appl., 1 (1968), 103–125 | DOI | MR | Zbl

[3] M. A. Noor, J. Iqbal, K. I. Noor, E. Al-Said, “Generalized AOR method for solving absolute complementarity problems”, J. Appl. Math. | DOI | MR

[4] O. L. Mangasarian, “Absolute value programming”, Comput. Optim. Appl., 36 (2007), 43–53 | DOI | MR | Zbl

[5] O. L. Mangasarian, “Absolute value equation solution via concave minimization”, Optim. Lett., 1 (2007), 3–8 | DOI | MR | Zbl

[6] O. L. Mangasarian, R. R. Meyer, “Absolute value equations”, Lin. Alg. Appl., 419 (2006), 359–367 | DOI | MR | Zbl

[7] M. A. Noor, J. Iqbal, S. Khattri, E. Al-Said, “A new iterative method for solving absolute value equations”, Int. J. Phys. Sci., 6 (2011), 1793–1797

[8] M. A. Noor, J. Iqbal, K. I. Noor, E. Al-Said, “On an iterative method for solving absolute value equations”, Optim. Lett., 6 (2012), 1027–1033 | DOI | MR | Zbl

[9] M. A. Noor, J. Iqbal, E. Al-Said, “Residual iterative method for solving absolute value equations”, Abs. Appl. Anal. | DOI | MR

[10] A. Hadjidimos, A. Yeyios, “Symmetric accelerated over-relaxation (SAOR) method”, Math. Comp. Sim., 24 (1982), 72–76 | DOI | MR | Zbl

[11] S. Karamardian, “Generalized complementarity problem”, J. Optim. Theory Appl., 8 (1971), 161–168 | DOI | MR | Zbl

[12] M. A. Noor, PhD Thesis, Brunel University, London, UK, 1975

[13] O. L. Mangasarian, “The linear complementarity problem as a separable bilinear program”, J. Glob. Optim., 6 (1995), 153–161 | DOI | MR | Zbl

[14] J. Rohn, “A theorem of the alternatives for the equation $Ax+B|x|=b$”, Lin. Multilin. Alg., 52 (2004), 421–426 | DOI | MR | Zbl

[15] M. A. Noor, “On merit functions for quasivariational inequalities”, J. Math. Ineq., 1 (2007), 259–268 | DOI | MR | Zbl

[16] B. H. Ahn, “Iterative methods for linear complementarity problems with upper bounds on primary variables”, Programming, 26 (1983), 295–315 | DOI | MR | Zbl