Nonself-similar flow with a shock wave reflected from the center of symmetry and new self-similar solutions with two reflected shocks
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 475-494 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In some problems concerning cylindrically and spherically symmetric unsteady ideal (inviscid and nonheat-conducting) gas flows at the axis and center of symmetry (hereafter, at the center of symmetry), the gas density vanishes and the speed of sound becomes infinite starting at some time. This situation occurs in the problem of a shock wave reflecting from the center of symmetry. For an ideal gas with constant heat capacities and their ratio $\gamma$ (adiabatic exponent), the solution of this problem near the reflection point is self-similar with a self-similarity exponent determined in the course of the solution construction. Assuming that $\gamma$ on the reflected shock wave decreases, if this decrease exceeds a threshold value, the flow changes substantially. Assuming that the type of the solution remains unchanged for such $\gamma$, self-similarity is preserved if a piston starts expanding from the center of symmetry at the reflection time preceded by a finite-intensity reflected shock wave propagating at the speed of sound. To answer some questions arising in this formulation, specifically, to find the solution in the absence of the piston, the evolution of a close-to-self-similar solution calculated by the method of characteristics is traced. The required modification of the method of characteristics and the results obtained with it are described. The numerical results reveal a number of unexpected features. As a result, new self-similar solutions are constructed in which two (rather than one) shock waves reflect from the center of symmetry in the absence of the piston.
@article{ZVMMF_2013_53_3_a13,
     author = {Kh. F. Valiyev and A. N. Kraiko},
     title = {Nonself-similar flow with a shock wave reflected from the center of symmetry and new self-similar solutions with two reflected shocks},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {475--494},
     year = {2013},
     volume = {53},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a13/}
}
TY  - JOUR
AU  - Kh. F. Valiyev
AU  - A. N. Kraiko
TI  - Nonself-similar flow with a shock wave reflected from the center of symmetry and new self-similar solutions with two reflected shocks
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 475
EP  - 494
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a13/
LA  - ru
ID  - ZVMMF_2013_53_3_a13
ER  - 
%0 Journal Article
%A Kh. F. Valiyev
%A A. N. Kraiko
%T Nonself-similar flow with a shock wave reflected from the center of symmetry and new self-similar solutions with two reflected shocks
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 475-494
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a13/
%G ru
%F ZVMMF_2013_53_3_a13
Kh. F. Valiyev; A. N. Kraiko. Nonself-similar flow with a shock wave reflected from the center of symmetry and new self-similar solutions with two reflected shocks. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 475-494. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a13/

[1] Valiev Kh. F., Kraiko A. N., “Avtomodelnye nestatsionarnye techeniya sovershennogo gaza s izmeneniem pokazatelya adiabaty na “otrazhennoi” udarnoi volne”, Prikl. matem. i mekhan., 75:6 (2011), 961–982 | MR

[2] Sedov L. I., Metody podobiya i razmernosti v mekhanike, Nauka, M., 1987 | MR

[3] Guderley G., “Starke kugelige und zylindrische Verdichtungsstöß{e} in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse”, Luftfartforschung, 19:9 (1942), 302–312 | MR

[4] Barenblatt G. I., Podobie, avtomodelnost, promezhutochnaya asimptotika: teoriya i prilozheniya k geofizicheskoi gidrodinamike, Gidrometeoizdat, L., 1982 | MR

[5] Grodzovskii G. L., “Avtomodelnye dvizheniya gaza pri silnom vzryve”, Dokl. AN SSSR, 111:5 (1956), 969–971

[6] Valiev Kh. F., “Otrazhenie udarnoi volny ot tsentra ili osi simmetrii pri pokazatelyakh adiabaty ot 1.2 do 3”, Prikl. matem. i mekhan., 73:3 (2009), 397–407 | MR

[7] Valiev Kh. F., Kraiko A. N., “Tsilindricheski i sfericheski simmetrichnoe bystroe silnoe szhatie idealnogo sovershennogo gaza s pokazatelyami adiabaty ot 1.001 do 3”, Prikl. matem. i mekhan., 75:2 (2011), 314–326 | MR

[8] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, M., 1986 | MR

[9] Chernyi G. G., Gazovaya dinamika, Nauka, M., 1988

[10] Kraiko A. N., Teoreticheskaya gazovaya dinamika: klassika i sovremennost, TORUS PRESS, M., 2010

[11] Chernyi G. G., Techeniya gaza s bolshoi sverkhzvukovoi skorostyu, Fizmatgiz, M., 1959

[12] Kvashnina S. S., Chernyi G. G., “Ustanovivsheesya obtekanie konusa potokom detoniruyuschego gaza”, Prikl. matem. i mekhan., 23:1 (1959), 182–186 | MR | Zbl

[13] Chernyi G. G., “Avtomodelnye zadachi obtekaniya tel goryuchei smesyu”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1966, no. 6, 10–24

[14] Kraiko A. N., Tillyaeva N. I., “Obtekanie konusa goryuchei smesyu s detonatsionnoi volnoi Chepmena–Zhuge”, Prikl. matem. i mekhan., 77:1 (2013), 3–14

[15] Levin V. A., Chernyi G. G., “Asimptoticheskie zakony povedeniya detonatsionnykh voln”, Prikl. matem. i mekhan., 31:3 (1967), 393–405 | Zbl

[16] Afanaseva E. A., Levin V. A., “Mnogofrontovoe detonatsionnoe gorenie veschestva”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1982, no. 2, 126–131

[17] Wendroff B., “The Riemann problem for materials with nonconvex equations of state. I: Isentropic flow”, J. Math. Analysis and Appl., 38 (1972), 454–456 | DOI | MR

[18] Wendroff B., “The Riemann problem for materials with nonconvex equations of state. II: General flow”, J. Math. Analysis and Appl., 38 (1972), 640–658 | DOI | MR | Zbl

[19] Liu Tai-Ping, “The Riemann problem for general systems of conservation laws”, J. Different. Equat., 18 (1975), 218–234 | DOI | MR | Zbl

[20] Liu Tai-Ping, “Existense and uniqueness theorems for Riemann problems”, Transact. of the American Math. Soc., 212 (1975), 375–382 | DOI | MR | Zbl

[21] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR