@article{ZVMMF_2013_53_3_a11,
author = {N. Ya. Moiseev},
title = {Explicit-implicit difference scheme for the joint solution of the radiative transfer and energy equations by the splitting method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {442--458},
year = {2013},
volume = {53},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a11/}
}
TY - JOUR AU - N. Ya. Moiseev TI - Explicit-implicit difference scheme for the joint solution of the radiative transfer and energy equations by the splitting method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 442 EP - 458 VL - 53 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a11/ LA - ru ID - ZVMMF_2013_53_3_a11 ER -
%0 Journal Article %A N. Ya. Moiseev %T Explicit-implicit difference scheme for the joint solution of the radiative transfer and energy equations by the splitting method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 442-458 %V 53 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a11/ %G ru %F ZVMMF_2013_53_3_a11
N. Ya. Moiseev. Explicit-implicit difference scheme for the joint solution of the radiative transfer and energy equations by the splitting method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 442-458. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a11/
[1] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966
[2] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1971 | MR | Zbl
[3] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985 | Zbl
[4] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967
[5] Karlson B., Bell Dzh., “Reshenie transportnogo uravneniya Sn-metodom”, Fizika yadernykh reaktorov, Atomizdat, M., 1959, 408–432
[6] Karlson B., Bell Dzh., “Chislennoe reshenie zadach kineticheskoi teorii neitronov”, Teoriya yadernykh reaktorov, Gosatomizdat, M., 1963, 243–258
[7] Bass L. P., Voloschenko A. M., Germogenova T. A., Metody diskretnykh ordinat v zadachakh o perenose izlucheniya, IPM im. M. V. Keldysha RAN, M., 1986
[8] Vladimirov V. S., “Chislennoe reshenie uravneniya dlya sfery”, Vychisl. matem., VTs AN SSSR, M., 1958, 3–33
[9] Nikiforova A. V., Tarasov V. A., Troschiev V. E., “O reshenii kineticheskikh uravnenii divergentnym metodom kharakteristik”, Zh. vychisl. matem. i matem. fiz., 12:4 (1972), 1041–1048 | MR | Zbl
[10] Andreev E. S., Kozmanov M. Yu., “Metodika “SVET” dlya resheniya zadach perenosa teplovogo izlucheniya”, VANT. Ser. Metodiki i programmy chisl. resheniya zadach matem. fiz., 1985, no. 2, 50–59
[11] Featrier P. C. R., Acad. Sci. Paris, 258 (1964), 3198–3210
[12] Rybicki G., J. of Quantitative Spectroscopy and Radiative Transfer, 11 (1971), 589–596 | DOI
[13] Goldin V. Ya., “Kvazidiffuzionnyi metod resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1078–1087 | MR
[14] Anistratov D. Yu., Aristova E. N., Goldin V. Ya., “Nelineinyi metod resheniya zadach perenosa izlucheniya v srede”, Matem. modelirovanie, 8:12 (1996), 3–28 | MR | Zbl
[15] Zuev A. I., “Primenenie metoda Nyutona–Kantorovicha dlya resheniya zadachi o rasprostranenii neravnovesnogo izlucheniya”, Zh. vychisl. matem. i matem. fiz., 13:3 (1973), 792–798 | MR
[16] Gusev V. Yu., Kozmanov M. Yu., Rachilov E. B., “Metod resheniya neyavnykh raznostnykh uravnenii, approksimiruyuschikh sistemy uravnenii perenosa i diffuzii izlucheniya”, Zh. vychisl. matem. i matem. fiz., 24:12 (1984), 1842–1849 | MR | Zbl
[17] Fedotova L. P., Shagaliev R. M., “Konechno-raznostnyi metod KM-metod dlya dvumernykh nestatsionarnykh protsessov perenosa v mnogogruppovom kineticheskom priblizhenii”, Matem. modelirovanie, 3:6 (1991), 29–41
[18] Gadzhiev A. D., Romanova E. M., Seleznev V. N., Shestakov A. A., “Metodika TOM4-KD dlya matematicheskogo modelirovaniya dvumernykh uravnenii perenosa izlucheniya v mnogogruppovom kvazidiffuzionnom priblizhenii”, VANT. Ser. Matem. modelirovanie fiz. protsessov, 2001, no. 4, 48–59
[19] Karlykhanov N. G., “Postroenie optimalnykh mnogodiagonalnykh metodov resheniya zadach perenosa izlucheniya”, Zh. vychisl. matem. i matem. fiz., 37:4 (1997), 494–498 | MR | Zbl
[20] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl
[21] Smelov V. V., Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978 | MR
[22] Dolgoleva G. V., “Chislennoe reshenie sistemy uravnenii, opisyvayuschei perenos izlucheniya i vzaimodeistvie ego s veschestvom”, VANT. Ser. Matem. modelirovanie fiz. protsessov, 1991, no. 1, 58–60
[23] Mikhals D., Zvezdnye atmosfery, Mir, M., 1982
[24] Gadzhiev A. D., Shestakov A. A., “Metod vydeleniya diagonalnoi matritsy dlya chislennogo resheniya uravnenii perenosa izlucheniya v R1-priblizhenii po skheme “Romb””, VANT. Ser. Matem. modelirovanie fiz. protsessov, 2006, no. 1
[25] Groshev E. V., “O primenenii metoda Raibiki k protsessu resheniya sistemy uravnenii perenosa izlucheniya iteratsiyami po granichnym usloviyam”, VANT. Ser. Matem. modelirovanie fiz. protsessov, 2010, no. 1, 39–47
[26] Gadzhiev A. D., Seleznev V. N., Shestakov A. A., “DS-n metod s iskusstvennoi dissipatsiei i VDM-metod uskoreniya iteratsii dlya chislennogo resheniya dvumernogo uravneniya perenosa teplovogo izlucheniya v kineticheskoi modeli”, VANT. Ser. Matem. modelirovanie fiz. protsessov, 2003, no. 4, 33–46
[27] Tikhomirov B. P., “Raznostnaya skhema “KREST” dlya sistemy uravnenii perenosa luchistoi energii”, VANT. Ser. Matem. modelirovanie fiz. protsessov, 2009, no. 2, 21–36 | MR
[28] Kakhaner D., Mouler K., Nesh S., Chislennye metody i programmnoe obespechenie, Mir, M., 2001
[29] Bagrinovskii K. A., Godunov S. K., “Raznostnye skhemy dlya mnogomernykh zadach”, Dokl. AN SSSR, 1957, 431–433 | MR
[30] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl
[31] Yanenko N. N., Yaushev I. K., “Ob odnoi absolyutno ustoichivoi skheme integrirovaniya uravnenii gidrodinamiki”, Raznostnye metody resheniya zadach matematicheskoi fiziki, Tr. MIAN, 74, 1966
[32] Moiseev N. Ya., Silanteva I. Yu., “Raznostnye skhemy proizvolnogo poryadka approksimatsii dlya resheniya lineinykh uravnenii perenosa s postoyannymi koeffitsientami metodom Godunova s antidiffuziei”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1282–1293 | MR
[33] Makotra O. A., Moiseev N. Ya., Silanteva I. Yu. i dr., “Cimmetrichnye raznostnye skhemy pokomponentnogo rasschepleniya i ekvivalentnye im skhemy prediktor-korrektor dlya resheniya mnogomernykh zadach gazovoi dinamiki metodom Godunova”, Zh. vychisl. matem. i matem. fiz., 48:9 (2009), 1659–1672
[34] Moiseev N. Ya., “Neyavnye raznostnye skhemy beguschego scheta povyshennoi tochnosti”, Zh. vychisl. matem. i matem. fiz., 51:5 (2011), 920–935 | MR | Zbl
[35] Fleck J. A., Cummings J. D., “An Implicit Monte Carlo Scheme for Calculating Time and Frequency Dependent Nonlinear Radiation Transport”, J. of Comput. Phys., 8 (1971), 313–342 | DOI | MR | Zbl
[36] Zavyalov V. V., Kozmanov M. Yu., Seleznev V. N. i dr., “Rezultaty chislennykh raschetov odnomernykh testovykh zadach perenosa izlucheniya”, VANT. Ser. Matem. modelirovanie fiz. protsessov, 2005, no. 3, 26–36
[37] Reed W. H., “New Difference Schemes for the Neutron Transport Equation”, Nucl. Sci. Eng., 46:2 (1971), 309–314
[38] Barysheva N. M., Zuev A. I., Karlykhanov N. G. i dr., “Neyavnaya skhema dlya chislennogo modelirovaniya fizicheskikh protsessov v lazernoi plazme”, Zh. vychisl. matem. i matem. fiz., 22:2 (1982), 401–410 | MR
[39] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya, Nauka, Novosibirsk, 1979 | MR
[40] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 2001 | Zbl
[41] Yanenko N. N., Demidov G. V., “Metod slaboi approksimatsii kak konstruktivnyi metod postroeniya resheniya zadachi Koshi”, Nekotorye voprosy vychisl. i prikladnoi matem., Nauka, Novosibirsk, 1966
[42] Fryazinov I. V., “Ekonomichnye simmetrizovannye skhemy resheniya kraevykh zadach dlya mnogomernogo uravneniya parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 8:2 (1968), 436–443
[43] Baker G. A., Oliphant T. A., “An implicit numerical method for solving the two-dimensional heat equation”, Quart. Appl. Math., 17:4 (1960) | MR
[44] Godunov S. K., Zabrodin A. V., “O raznostnykh skhemakh vtorogo poryadka tochnosti dlya mnogomernykh zadach”, Zh. vychisl. matem. i matem. fiz., 2:4 (1962), 706–708 | MR | Zbl
[45] Strang G., “On the construction and comparison of difference schemes”, SIAM J. Numer. Anal., 5 (1968), 506–507 | DOI | MR
[46] Moiseev N. Ya., “Monotonnye raznostnye skhemy povyshennoi tochnosti dlya resheniya zadach gazovoi dinamiki metodom Godunova s antidiffuziei”, Zh. vychisl. matem. i matem. fiz., 51:4 (2011), 723–734 | MR | Zbl
[47] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968 | MR