@article{ZVMMF_2013_53_3_a1,
author = {A. S. Antipin and N. Mijailovic and M. Jacimovic},
title = {A second-order iterative method for solving quasi-variational inequalities},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {336--342},
year = {2013},
volume = {53},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a1/}
}
TY - JOUR AU - A. S. Antipin AU - N. Mijailovic AU - M. Jacimovic TI - A second-order iterative method for solving quasi-variational inequalities JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 336 EP - 342 VL - 53 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a1/ LA - ru ID - ZVMMF_2013_53_3_a1 ER -
%0 Journal Article %A A. S. Antipin %A N. Mijailovic %A M. Jacimovic %T A second-order iterative method for solving quasi-variational inequalities %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 336-342 %V 53 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a1/ %G ru %F ZVMMF_2013_53_3_a1
A. S. Antipin; N. Mijailovic; M. Jacimovic. A second-order iterative method for solving quasi-variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 336-342. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a1/
[1] Antipin A. S., Miyailovich N., Yachimovich M., “Nepreryvnyi metod vtorogo poryadka dlya resheniya kvazivariatsionnykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1973–1980 | MR | Zbl
[2] Antipin A. S., Nedich A., “Nepreryvnyi metod linearizatsii vtorogo poryadka dlya zadach vypuklogo programmirovaniya”, Vestn. MGU. Vychisl. matem. i kibernetika, 1996, no. 2, 3–12 | MR | Zbl
[3] Nedich A., Nepreryvnye iterativnye metody minimizatsii vysokogo poryadka, Diss. ... kand. fiz.-mat. nauk, MGU im. M. V. Lomonosova, M., 1994
[4] Vasilev F. P., Amochkina T. V., Nedich A., “Regulyarizovannyi variant nepreryvnogo metoda proektsii gradienta vtorogo poryadka”, Zh. MGU vychisl. matem. i kibernetiki, 1995, no. 3, 33–39 | MR
[5] Antipin A. S., “Metody resheniya variatsionnykh neravenstv so svyazannymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1291–1307 | MR | Zbl
[6] Ryazantseva I. P., “Metody vtorogo poryadka dlya kvazivariatsionnykh neravenstv”, Differents. ur-niya, 44 (2008), 1006–1017 | MR | Zbl
[7] Nesterov Yu., Scrimali L., Solving strongly monotone variational and quasi-variational inequalities, Core discussion paper 2006/107, 14 pp.
[8] Noor M. A., Menon Z. A., “Algorithms for general mixed quasi variational inequalities”, J. Inequalities in Pure and Appl. Math., 3:4 (2002), 59 | MR | Zbl
[9] Noor M. A., Oettli W., “On general nonlinear somplementarity problems and quasi-equlibria”, Le Mathematiche, XLIX (1994), 313–331 | MR | Zbl
[10] Ryazantseva I. P., “Metody pervogo poryadka dlya resheniya nekotorykh kvazivariatsionnykh neravenstv v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 47:2 (2007), 183–190 | MR | Zbl
[11] Fukushima M., “A class of gap functions for quasi-variational inequality problems”, J. Industr. and Management Optimiz., 3:2 (2007), 165–171 | DOI | MR | Zbl
[12] Antipin A. S., Metody nelineinogo programmirovaniya, osnovannye na pryamoi i dvoistvennoi modifikatsii funktsii Lagranzha, Preprint, VNII SI, M., 1979
[13] Vasilev F. P., Metody optimizatsii, v. 1, 2, MTsNMO, M., 2011