A second-order iterative method for solving quasi-variational inequalities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 336-342 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A second-order iterative method for solving quasi-variational inequalities is examined, and sufficient conditions for this method to converge are found.
@article{ZVMMF_2013_53_3_a1,
     author = {A. S. Antipin and N. Mijailovic and M. Jacimovic},
     title = {A second-order iterative method for solving quasi-variational inequalities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {336--342},
     year = {2013},
     volume = {53},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a1/}
}
TY  - JOUR
AU  - A. S. Antipin
AU  - N. Mijailovic
AU  - M. Jacimovic
TI  - A second-order iterative method for solving quasi-variational inequalities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 336
EP  - 342
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a1/
LA  - ru
ID  - ZVMMF_2013_53_3_a1
ER  - 
%0 Journal Article
%A A. S. Antipin
%A N. Mijailovic
%A M. Jacimovic
%T A second-order iterative method for solving quasi-variational inequalities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 336-342
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a1/
%G ru
%F ZVMMF_2013_53_3_a1
A. S. Antipin; N. Mijailovic; M. Jacimovic. A second-order iterative method for solving quasi-variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 3, pp. 336-342. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_3_a1/

[1] Antipin A. S., Miyailovich N., Yachimovich M., “Nepreryvnyi metod vtorogo poryadka dlya resheniya kvazivariatsionnykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1973–1980 | MR | Zbl

[2] Antipin A. S., Nedich A., “Nepreryvnyi metod linearizatsii vtorogo poryadka dlya zadach vypuklogo programmirovaniya”, Vestn. MGU. Vychisl. matem. i kibernetika, 1996, no. 2, 3–12 | MR | Zbl

[3] Nedich A., Nepreryvnye iterativnye metody minimizatsii vysokogo poryadka, Diss. ... kand. fiz.-mat. nauk, MGU im. M. V. Lomonosova, M., 1994

[4] Vasilev F. P., Amochkina T. V., Nedich A., “Regulyarizovannyi variant nepreryvnogo metoda proektsii gradienta vtorogo poryadka”, Zh. MGU vychisl. matem. i kibernetiki, 1995, no. 3, 33–39 | MR

[5] Antipin A. S., “Metody resheniya variatsionnykh neravenstv so svyazannymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1291–1307 | MR | Zbl

[6] Ryazantseva I. P., “Metody vtorogo poryadka dlya kvazivariatsionnykh neravenstv”, Differents. ur-niya, 44 (2008), 1006–1017 | MR | Zbl

[7] Nesterov Yu., Scrimali L., Solving strongly monotone variational and quasi-variational inequalities, Core discussion paper 2006/107, 14 pp.

[8] Noor M. A., Menon Z. A., “Algorithms for general mixed quasi variational inequalities”, J. Inequalities in Pure and Appl. Math., 3:4 (2002), 59 | MR | Zbl

[9] Noor M. A., Oettli W., “On general nonlinear somplementarity problems and quasi-equlibria”, Le Mathematiche, XLIX (1994), 313–331 | MR | Zbl

[10] Ryazantseva I. P., “Metody pervogo poryadka dlya resheniya nekotorykh kvazivariatsionnykh neravenstv v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 47:2 (2007), 183–190 | MR | Zbl

[11] Fukushima M., “A class of gap functions for quasi-variational inequality problems”, J. Industr. and Management Optimiz., 3:2 (2007), 165–171 | DOI | MR | Zbl

[12] Antipin A. S., Metody nelineinogo programmirovaniya, osnovannye na pryamoi i dvoistvennoi modifikatsii funktsii Lagranzha, Preprint, VNII SI, M., 1979

[13] Vasilev F. P., Metody optimizatsii, v. 1, 2, MTsNMO, M., 2011