An iterative method for solving an inverse problem for a first-order nonlinear partial differential equation with estimates of guaranteed accuracy and the number of steps
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2, pp. 275-280
Voir la notice de l'article provenant de la source Math-Net.Ru
For a partial differential equation simulating population dynamics, the inverse problem of determining its nonlinear right-hand side from an additional boundary condition is studied. This inverse problem is reduced to a functional equation, for which the existence and uniqueness of a solution is proven. An iterative method for solving this inverse problem is proposed. The accuracy of the method is estimated, and restrictions on the number of steps are obtained.
@article{ZVMMF_2013_53_2_a9,
author = {D. V. Churbanov and A. Yu. Shcheglov},
title = {An iterative method for solving an inverse problem for a first-order nonlinear partial differential equation with estimates of guaranteed accuracy and the number of steps},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {275--280},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a9/}
}
TY - JOUR AU - D. V. Churbanov AU - A. Yu. Shcheglov TI - An iterative method for solving an inverse problem for a first-order nonlinear partial differential equation with estimates of guaranteed accuracy and the number of steps JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 275 EP - 280 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a9/ LA - ru ID - ZVMMF_2013_53_2_a9 ER -
%0 Journal Article %A D. V. Churbanov %A A. Yu. Shcheglov %T An iterative method for solving an inverse problem for a first-order nonlinear partial differential equation with estimates of guaranteed accuracy and the number of steps %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 275-280 %V 53 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a9/ %G ru %F ZVMMF_2013_53_2_a9
D. V. Churbanov; A. Yu. Shcheglov. An iterative method for solving an inverse problem for a first-order nonlinear partial differential equation with estimates of guaranteed accuracy and the number of steps. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2, pp. 275-280. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a9/