@article{ZVMMF_2013_53_2_a9,
author = {D. V. Churbanov and A. Yu. Shcheglov},
title = {An iterative method for solving an inverse problem for a first-order nonlinear partial differential equation with estimates of guaranteed accuracy and the number of steps},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {275--280},
year = {2013},
volume = {53},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a9/}
}
TY - JOUR AU - D. V. Churbanov AU - A. Yu. Shcheglov TI - An iterative method for solving an inverse problem for a first-order nonlinear partial differential equation with estimates of guaranteed accuracy and the number of steps JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 275 EP - 280 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a9/ LA - ru ID - ZVMMF_2013_53_2_a9 ER -
%0 Journal Article %A D. V. Churbanov %A A. Yu. Shcheglov %T An iterative method for solving an inverse problem for a first-order nonlinear partial differential equation with estimates of guaranteed accuracy and the number of steps %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 275-280 %V 53 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a9/ %G ru %F ZVMMF_2013_53_2_a9
D. V. Churbanov; A. Yu. Shcheglov. An iterative method for solving an inverse problem for a first-order nonlinear partial differential equation with estimates of guaranteed accuracy and the number of steps. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2, pp. 275-280. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a9/
[1] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, Izd-vo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 1999
[2] Denisov A. M., “Determination of a nonlinear coefficient in a hyperbolic equation for the Goursat problem”, J. Inv. Ill-Posed Problems, 6:4 (1998), 327–334 | MR | Zbl
[3] Muzylev N. V., “Teoremy edinstvennosti dlya nekotorykh obratnykh zadach teploprovodnosti”, Zh. vychisl. matem. i matem. fiz., 20:2 (1980), 388–400 | MR | Zbl
[4] Scheglov A. Yu., “Obratnaya koeffitsientnaya zadacha dlya kvazilineinogo uravneniya giperbolicheskogo tipa s finalnym pereopredeleniem”, Zh. vychisl. matem. i matem. fiz., 46:4 (2006), 647–666 | MR
[5] Denisov A. M., Makeev A. S., “Iteratsionnye metody resheniya obratnoi zadachi dlya odnoi modeli populyatsii”, Zh. vychisl. matem. i matem. fiz., 44:8 (2004), 1480–1489 | MR | Zbl
[6] Denisov A. M., Makeev A. S., “Chislennyi metod resheniya obratnoi zadachi dlya modeli populyatsii”, Zh. vychisl. matem. i matem. fiz., 46:3 (2006), 490–500 | MR | Zbl
[7] Gyllenberger M., Osipov A., “The inverse problem of linear age-structured population dynamics”, J. Evol. Eq., 2 (2002), 223–239 | DOI | MR
[8] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1970 | MR