High-order accurate monotone compact running scheme for multidimensional hyperbolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2, pp. 264-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A high-order accurate monotone compact difference scheme proposed earlier by the author for one-dimensional nonstationary hyperbolic equations is extended to multidimensional equations. The resulting scheme is fourth-order accurate in space on a compact stencil and third-order accurate in time. Additionally, the scheme is conservative, absolutely stable, and efficient and can be solved using the running calculation method in space. By computing initial-boundary value problems for the linear advection equation and the nonlinear Hopf equation on refined meshes, it is shown that the orders of grid convergence of the multidimensional scheme are close to the corresponding orders of accuracy in independent variables. For the propagation of a two-dimensional rectangular pulse and the Hopf equation with a discontinuous solution, the multidimensional scheme is shown to inherit the monotonicity of its one-dimensional counterpart.
@article{ZVMMF_2013_53_2_a8,
     author = {B. V. Rogov},
     title = {High-order accurate monotone compact running scheme for multidimensional hyperbolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {264--274},
     year = {2013},
     volume = {53},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a8/}
}
TY  - JOUR
AU  - B. V. Rogov
TI  - High-order accurate monotone compact running scheme for multidimensional hyperbolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 264
EP  - 274
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a8/
LA  - ru
ID  - ZVMMF_2013_53_2_a8
ER  - 
%0 Journal Article
%A B. V. Rogov
%T High-order accurate monotone compact running scheme for multidimensional hyperbolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 264-274
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a8/
%G ru
%F ZVMMF_2013_53_2_a8
B. V. Rogov. High-order accurate monotone compact running scheme for multidimensional hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2, pp. 264-274. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a8/

[1] Kholodov A. S., “Chislennye metody resheniya uravnenii i sistem giperbolicheskogo tipa”, Entsiklopediya nizkotemperaturnoi plazmy, v. VII-1, Ch. 2, Yanus-K, M., 2008, 141–174

[2] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1992 | MR

[3] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1638–1667 | MR

[4] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR

[5] Ostapenko V. V., “O postroenii raznostnykh skhem povyshennoi tochnosti dlya skvoznogo rascheta nestatsionarnykh udarnykh voln”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1857–1874 | MR | Zbl

[6] Rogov B. V., Mikhailovskaya M. N., “Monotonnaya vysokotochnaya kompaktnaya skhema beguschego scheta dlya kvazilineinykh uravnenii giperbolicheskogo tipa”, Dokl. AN, 440:2 (2011), 172–177 | MR | Zbl

[7] Rogov B. V., Mikhailovskaya M. N., “Monotonnaya vysokotochnaya kompaktnaya skhema beguschego scheta dlya kvazilineinykh uravnenii giperbolicheskogo tipa”, Matem. modelirovanie, 23:12 (2011), 65–78 | MR | Zbl

[8] Mikhailovskaya M. N., Rogov B. V., “Monotonnye kompaktnye skhemy beguschego scheta dlya sistem uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 672–695 | MR

[9] Ostapenko V. V., “Simmetrichnye kompaktnye skhemy s iskusstvennymi vyazkostyami povyshennogo poryadka divergentnosti”, Zh. vychisl. matem. i matem. fiz., 42:7 (2002), 1019–1038 | MR | Zbl

[10] Tolstykh A. I., Shirobokov D. A., “O raznostnykh skhemakh s kompaktnymi approksimatsiyami pyatogo poryadka dlya prostranstvennykh techenii vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 71–85 | MR | Zbl

[11] Kalitkin H. H., Alshin A. B., Alshina E. A., Rogov B. V., Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005

[12] Grudnitskii V. G., Prokhorchuk Yu. A., “Odin priem postroeniya raznostnykh skhem s proizvolnym poryadkom approksimatsii differentsialnykh uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR, 234:6 (1977), 1249–1252 | MR

[13] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[14] Kalitkin N. N., Koryakin P. V., “Bikompaktnye skhemy i sloistye sredy”, Dokl. AN, 419:6 (2008), 744–748 | MR | Zbl

[15] Rogov B. V., Mikhailovskaya M. N., “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, Dokl. AN, 430:4 (2010), 470–474 | MR | Zbl

[16] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi pervogo poryadka, Fizmatlit, M., 2003 | Zbl