High-order accurate monotone compact running scheme for multidimensional hyperbolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2, pp. 264-274

Voir la notice de l'article provenant de la source Math-Net.Ru

A high-order accurate monotone compact difference scheme proposed earlier by the author for one-dimensional nonstationary hyperbolic equations is extended to multidimensional equations. The resulting scheme is fourth-order accurate in space on a compact stencil and third-order accurate in time. Additionally, the scheme is conservative, absolutely stable, and efficient and can be solved using the running calculation method in space. By computing initial-boundary value problems for the linear advection equation and the nonlinear Hopf equation on refined meshes, it is shown that the orders of grid convergence of the multidimensional scheme are close to the corresponding orders of accuracy in independent variables. For the propagation of a two-dimensional rectangular pulse and the Hopf equation with a discontinuous solution, the multidimensional scheme is shown to inherit the monotonicity of its one-dimensional counterpart.
@article{ZVMMF_2013_53_2_a8,
     author = {B. V. Rogov},
     title = {High-order accurate monotone compact running scheme for multidimensional hyperbolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {264--274},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a8/}
}
TY  - JOUR
AU  - B. V. Rogov
TI  - High-order accurate monotone compact running scheme for multidimensional hyperbolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 264
EP  - 274
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a8/
LA  - ru
ID  - ZVMMF_2013_53_2_a8
ER  - 
%0 Journal Article
%A B. V. Rogov
%T High-order accurate monotone compact running scheme for multidimensional hyperbolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 264-274
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a8/
%G ru
%F ZVMMF_2013_53_2_a8
B. V. Rogov. High-order accurate monotone compact running scheme for multidimensional hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2, pp. 264-274. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a8/