Algorithm for reduced grid generation on a sphere for a global finite-difference atmospheric model
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2, pp. 291-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A reduced latitude-longitude grid is a modified version of a uniform spherical grid in which the number of longitudinal grid points is not fixed but depends on latitude. A method for constructing a reduced grid for a global finite-difference semi-Lagrangian atmospheric model is discussed. The key idea behind the algorithm is to generate a one-dimensional latitude grid and then to find a reduced grid that not only has a prescribed resolution structure and an admissible cell shape distortion but also minimizes a certain functional. The functional is specified as the rms interpolation error of an analytically defined function. In this way, the interpolation error, which is a major one in finite-difference semi-Lagrangian models, is taken into account. The potential of the proposed approach is demonstrated as applied to the advection equation on a sphere, which is numerically solved with various velocity fields on constructed reduced grids.
@article{ZVMMF_2013_53_2_a12,
     author = {R. Yu. Fadeev},
     title = {Algorithm for reduced grid generation on a sphere for a global finite-difference atmospheric model},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {291--308},
     year = {2013},
     volume = {53},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a12/}
}
TY  - JOUR
AU  - R. Yu. Fadeev
TI  - Algorithm for reduced grid generation on a sphere for a global finite-difference atmospheric model
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 291
EP  - 308
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a12/
LA  - ru
ID  - ZVMMF_2013_53_2_a12
ER  - 
%0 Journal Article
%A R. Yu. Fadeev
%T Algorithm for reduced grid generation on a sphere for a global finite-difference atmospheric model
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 291-308
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a12/
%G ru
%F ZVMMF_2013_53_2_a12
R. Yu. Fadeev. Algorithm for reduced grid generation on a sphere for a global finite-difference atmospheric model. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2, pp. 291-308. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a12/

[1] Boybeyi Z., Ahmad N. N., Bacon D. P. et al., “Evaluation of the operational multiscale environment model with grid adaptivity against the European tracer experiment”, J. Appl. Meteor., 40 (2001), 1541–1558 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[2] Skamarock W. C., Oliger J., Street R. L., “Adaptive grid refinements for numerical weather prediction”, J. Comput. Phys., 80 (1989), 27–60 | DOI | Zbl

[3] Villiamson D., “Raznostnye approksimatsii uravnenii dvizheniya zhidkosti na sfere”, Chisl. metody, ispolzuemye v atmosfernykh modelyakh, Per. s angl., v. 2, ed. V. P. Sadokov, Gidrometeoizdat, L., 1982

[4] Majewski D., Liermann D., Prohl P. et al., “The operational global icosahedral-hexagonal gridpoint model GME: description and high-resolution tests”, Mon. Wea. Rev., 130 (2002), 319–338 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[5] Benjamin S. G., Grell G. A., Brown J. M. et al., “Mesoscale weather prediction with the RUC hybrid isentropic/terrain-following coordinate model”, Mon. Wea. Rev., 132 (2004), 473–494 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[6] ICON GCM: ICOsahedral Non-hydrostatic Generation Circulation Model http://icon.enes.org/ | Zbl

[7] Walko R. L., Avissar R., “The ocean-land-atmosphere model (OLAM). II: Formulation and tests of the non-hydrostatic dynamic core”, Mon. Wea. Rev., 136 (2008), 4045–4062 | DOI

[8] Weller H., Weller H. G., Fournier A., “Voronoi, Delaunay, and block-structured mesh refinement for solution of the shallow-water equations on the sphere”, Mon. Wea. Rev., 137 (2009), 4208–4224 | DOI

[9] Williamson D. L., Browning G. L., “Comparison of grid and difference approximations for numerical weather prediction over the sphere”, J. Appl. Meteor., 106 (1973), 69–88

[10] Collins W. D., Rasch P. J., Boville B. A. et al., “The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3)”, J. Climate, 19 (2006), 2144–2161 | DOI

[11] Sadourny R., “Conservative finite-difference approximations of the shallow-water equations”, Mon. Wea. Rev., 100 (1972), 136–144 | 2.3.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[12] Kageyama A., Sato T., “The "Yin-Yang Grid": An overset grid in spherical geometry”, Geochem. Geophys. Geosyst., 5:9 (2004), 1–15 | DOI

[13] Li X., Chen D., Peng X. et al., “A multimoment finite-volume shallow-water model on the Yin-Yang overset spherical grid”, Mon. Wea. Rev., 136 (2008), 3066–3086 | DOI

[14] Qaddouri A., “Nonlinear shallow-water equations on the Yin-Yang grid”, Quart. J. Roy. Meteorol. Soc., 137 (2011), 810–818 | DOI

[15] Gates W. L., Riegel G. A., “A study of numerical errors in the integration of barotropic flow on the a spherical grid”, J. Geophys. Res., 67 (1962), 773–784 | DOI | MR

[16] Kurihara Y., “Numerical integration of the primitive equations on a spherical grid”, Mon. Wea. Rev., 93 (1965), 399–415 | 2.3.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[17] Shuman F. G., “On certan truncation errors associated with spherical coordinates”, J. Appl. Meteor., 9 (1970), 564–570 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[18] Jarraud M., Simmons A. J., “The spectral technique”, Proc. of the 1983 ECMWF seminar on numerical methods for weather prediction, v. 2, Reading, UK, 1–60

[19] Naughton M., Courtier P., “A pole problem in the reduced Gaussian grid”, Quart. J. Roy. Meteorol. Soc., 120 (1994), 1389–1407 | DOI

[20] Williamson D. L., Rosinski J. M., “Accuracy of reduced-grid calculations”, Quart. J. Roy. Meteorol. Soc., 126 (2000), 1619–1640 | DOI

[21] Jablonowski G., Oehmke R. G., Stout Q. F., “Block-structured adaptive meshes and reduced grids for atmospheric general circulation models”, Philos. Transact. A Math. Phys. Eng. Sci., 367 (2009), 4497–4522 | DOI | MR | Zbl

[22] Fadeev R. Yu., “Postroenie redutsirovannoi shirotno-dolgotnoi setki dlya zadachi chislennogo prognoza pogody”, Meteorologiya i gidrologiya, 2006, no. 9, 5–20

[23] Persson P.-O., Strang G., “A Simple mesh generator in MATLAB”, SIAM Review, 46:2 (2004), 329–345 | DOI | MR | Zbl

[24] Tolstykh M. A., Globalnaya polulagranzheva model chislennogo prognoza pogody, OAO FOP, Obninsk, 2010

[25] Staniforth A., Cote J., “Semi-Lagrangian integration schemes for atmospheric models. A review”, Mon. Wea. Rev., 119 (1991), 2206–2223 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[26] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl

[27] Temperton C., Hortal M., Simmons A., “A two-time-level semi-Lagrangian global spectral model”, Quart. J. Roy. Meteorol. Soc., 127 (2001), 111–129 | DOI

[28] Williamson D. L., Drake J. V., Hack J. J. et al., “A standart test set for numerical approximations to the shallow water equations in spherical geometry”, J. Comput. Phys., 102 (1992), 211–224 | DOI | MR | Zbl

[29] Doswell S. A., “A Kinematic analysis of frontogenesis associated with a nondivergent vortex”, J. Atmos. Sci., 41 (1984), 1242–1248 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[30] Nair R., Machenhauer B., “The mass conservative cell-integrated semi-Lagrangian advection scheme on the sphere”, Mon. Wea. Rev., 130 (2002), 649–667 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[31] Zerroukat M., Wood N., Staniforth A., “A semi-Lagrangian inherently conserving and efficient scheme for transport problems”, Quart. J. Roy. Meteorol. Soc., 128 (2002), 221–224 | DOI

[32] Zerroukat M., Wood N., Staniforth A., “SLICE-S: a semi-Lagrangian inherently conserving and efficient scheme for transport problems on the sphere”, Quart. J. Roy. Meteorol. Soc., 130 (2004), 2649–2664 | DOI

[33] Tolstykh M. A., Shashkin V. V., “Vorticity-divergence mass-conserving semi-Lagrangian shallow-water model using the reduced grid on the sphere”, J. Comput. Phys., 231 (2012), 4205–4233 | DOI | MR | Zbl