Geometric numerical schemes for the KdV equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2
Voir la notice de l'article provenant de la source Math-Net.Ru
Geometric discretizations that preserve certain Hamiltonian structures at the discrete level has been proven to enhance the accuracy of numerical schemes. In particular, numerous symplectic and multi-symplectic schemes have been proposed to solve numerically the celebrated Korteweg-de Vries equation. In this work, we show that geometrical schemes are as much robust and accurate as Fourier-type pseudospectral methods for computing the long-time KdV dynamics, and thus more suitable to model complex nonlinear wave phenomena.
@article{ZVMMF_2013_53_2_a10,
author = {D. Dutykh and M. Chhay and F. Fedele},
title = {Geometric numerical schemes for the {KdV} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {281},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a10/}
}
TY - JOUR AU - D. Dutykh AU - M. Chhay AU - F. Fedele TI - Geometric numerical schemes for the KdV equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 281 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a10/ LA - en ID - ZVMMF_2013_53_2_a10 ER -
D. Dutykh; M. Chhay; F. Fedele. Geometric numerical schemes for the KdV equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a10/