Geometric numerical schemes for the KdV equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Geometric discretizations that preserve certain Hamiltonian structures at the discrete level has been proven to enhance the accuracy of numerical schemes. In particular, numerous symplectic and multi-symplectic schemes have been proposed to solve numerically the celebrated Korteweg-de Vries equation. In this work, we show that geometrical schemes are as much robust and accurate as Fourier-type pseudospectral methods for computing the long-time KdV dynamics, and thus more suitable to model complex nonlinear wave phenomena.
@article{ZVMMF_2013_53_2_a10,
     author = {D. Dutykh and M. Chhay and F. Fedele},
     title = {Geometric numerical schemes for the {KdV} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {281},
     year = {2013},
     volume = {53},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a10/}
}
TY  - JOUR
AU  - D. Dutykh
AU  - M. Chhay
AU  - F. Fedele
TI  - Geometric numerical schemes for the KdV equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 281
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a10/
LA  - en
ID  - ZVMMF_2013_53_2_a10
ER  - 
%0 Journal Article
%A D. Dutykh
%A M. Chhay
%A F. Fedele
%T Geometric numerical schemes for the KdV equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 281
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a10/
%G en
%F ZVMMF_2013_53_2_a10
D. Dutykh; M. Chhay; F. Fedele. Geometric numerical schemes for the KdV equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a10/