Geometric numerical schemes for the KdV equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2

Voir la notice de l'article provenant de la source Math-Net.Ru

Geometric discretizations that preserve certain Hamiltonian structures at the discrete level has been proven to enhance the accuracy of numerical schemes. In particular, numerous symplectic and multi-symplectic schemes have been proposed to solve numerically the celebrated Korteweg-de Vries equation. In this work, we show that geometrical schemes are as much robust and accurate as Fourier-type pseudospectral methods for computing the long-time KdV dynamics, and thus more suitable to model complex nonlinear wave phenomena.
@article{ZVMMF_2013_53_2_a10,
     author = {D. Dutykh and M. Chhay and F. Fedele},
     title = {Geometric numerical schemes for the {KdV} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {281},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a10/}
}
TY  - JOUR
AU  - D. Dutykh
AU  - M. Chhay
AU  - F. Fedele
TI  - Geometric numerical schemes for the KdV equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 281
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a10/
LA  - en
ID  - ZVMMF_2013_53_2_a10
ER  - 
%0 Journal Article
%A D. Dutykh
%A M. Chhay
%A F. Fedele
%T Geometric numerical schemes for the KdV equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 281
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a10/
%G en
%F ZVMMF_2013_53_2_a10
D. Dutykh; M. Chhay; F. Fedele. Geometric numerical schemes for the KdV equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a10/