@article{ZVMMF_2013_53_2_a1,
author = {G. K. Kamenev and A. V. Lotov and T. S. Mayskaya},
title = {Iterative method for constructing coverings of the multidimensional unit sphere},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {181--194},
year = {2013},
volume = {53},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a1/}
}
TY - JOUR AU - G. K. Kamenev AU - A. V. Lotov AU - T. S. Mayskaya TI - Iterative method for constructing coverings of the multidimensional unit sphere JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 181 EP - 194 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a1/ LA - ru ID - ZVMMF_2013_53_2_a1 ER -
%0 Journal Article %A G. K. Kamenev %A A. V. Lotov %A T. S. Mayskaya %T Iterative method for constructing coverings of the multidimensional unit sphere %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 181-194 %V 53 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a1/ %G ru %F ZVMMF_2013_53_2_a1
G. K. Kamenev; A. V. Lotov; T. S. Mayskaya. Iterative method for constructing coverings of the multidimensional unit sphere. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 2, pp. 181-194. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_2_a1/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1968
[2] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[3] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive Decision Maps. Approximation and Visualization of Pareto Frontier, Kluwer, Boston, 2004 | MR | Zbl
[4] Hardin R. H., Sloane N. J. A., Smith W. D., “Spherical Codes”, A library of putatively optimal coverings of the sphere with $n$ equal caps, book in preparation http://neilsloane.com/coverings/index.html
[5] Conway J. H., Sloane N. J. A., Sphere packings, lattices and groups, Third Edition, Springer, Berlin, 1999 | MR
[6] Kamenev G. K., “Poliedralnaya approksimatsiya shara Metodom Glubokikh Yam s optimalnym poryadkom rosta moschnosti grannoi struktury”, Chislennaya geometriya, postroenie raschetnykh setok i vysokoproizvoditelnye vychisleniya, Tr. Mezhdunar. konf. NUMGRID2010 (Moskva, 11–13 oktyabrya 2010 g.), Izd. Folium, M., 2010, 47–52
[7] Gruber P. M., “Approximation of convex bodies”, Convexity and its applications, Birkhauser, Basel, 1983 | MR | Zbl
[8] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, Izd. VTs RAN, M., 2007 | MR
[9] Kamenev G. K., Chislennoe issledovanie effektivnosti metodov poliedralnoi approksimatsii vypuklykh tel, Izd. VTs RAN, M., 2010
[10] Bushenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 1982
[11] Efremov R. V., Kamenev G. K., “Ob optimalnom poryadke rosta chisla vershin i gipergranei v klasse khausdorfovykh metodov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1018–1031 | MR | Zbl
[12] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968 | MR
[13] Schneider R., “Zur optimalen Approximation konvexer Hyperflächen durch Polyeder”, Math. Ann., 256:3 (1981), 289–301 | DOI | MR | Zbl
[14] http://www.ccas.ru/mmes/mmeda/mcdm.htm
[15] Maiskaya T. S., “Otsenka radiusa pokrytiya mnogomernoi edinichnoi sfery metricheskoi setyu, porozhdennoi sfericheskoi sistemoi koordinat”, Sb. statei molodykh uchenykh fakulteta VMK MGU, 8, Izd. VMK MGU, M., 2011, 83–98
[16] Lotov A. V., Maiskaya T. S., “Neadaptivnye metody poliedralnoi approksimatsii obolochki Edzhvorta–Pareto, ispolzuyuschie suboptimalnye metricheskie seti na sfere napravlenii”, Zh. vychisl. matem. i matem. fiz., 52:1 (2012), 35–47 | MR | Zbl
[17] Kamenev G. K., Lotov A. V., Maiskaya T. S., “Postroenie suboptimalnykh pokrytii mnogomernoi edinichnoi sfery”, Dokl. AN, 444:2 (2012), 153–155 | MR | Zbl