Propagation of perturbations in a two-layer stratified rotating fluid with an interface excited by moving sources
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 1, pp. 90-118

Voir la notice de l'article provenant de la source Math-Net.Ru

Propagation of small perturbations in a two-layer inviscid stratified uniformly rotating fluid is studied assuming that the higher and lower density fluids occupy unbounded lower and upper half-spaces, respectively. The source of excitation is a plane wave travelling along the interface of the fluids. An explicit analytical solution of the problem is constructed, and its existence and uniqueness is proved. The long-time wave pattern developing in the fluids is analyzed.
@article{ZVMMF_2013_53_1_a8,
     author = {L. V. Perova},
     title = {Propagation of perturbations in a two-layer stratified rotating fluid with an interface excited by moving sources},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {90--118},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a8/}
}
TY  - JOUR
AU  - L. V. Perova
TI  - Propagation of perturbations in a two-layer stratified rotating fluid with an interface excited by moving sources
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 90
EP  - 118
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a8/
LA  - ru
ID  - ZVMMF_2013_53_1_a8
ER  - 
%0 Journal Article
%A L. V. Perova
%T Propagation of perturbations in a two-layer stratified rotating fluid with an interface excited by moving sources
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 90-118
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a8/
%G ru
%F ZVMMF_2013_53_1_a8
L. V. Perova. Propagation of perturbations in a two-layer stratified rotating fluid with an interface excited by moving sources. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 1, pp. 90-118. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a8/