The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 1, pp. 74-89
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The problem of plane monochromatic TM waves propagating in a layer with an arbitrary nonlinearity is considered. The layer is placed between two semi-infinite media. Surface waves propagating along the material interface are sought. The physical problem is reduced to solving a nonlinear eigenvalue transmission problem for a system of two ordinary differential equations. A theorem on the existence and localization of at least one eigenvalue is proven. On the basis of this theorem, a method for finding approximate eigenvalues of the considered problem is proposed. Numerical results for Kerr and saturation nonlinearities are presented as examples.
            
            
            
          
        
      @article{ZVMMF_2013_53_1_a7,
     author = {D. V. Valovik and E. V. Zarembo},
     title = {The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for {TM} waves propagating in a layer with arbitrary nonlinearity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {74--89},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a7/}
}
                      
                      
                    TY - JOUR AU - D. V. Valovik AU - E. V. Zarembo TI - The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 74 EP - 89 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a7/ LA - ru ID - ZVMMF_2013_53_1_a7 ER -
%0 Journal Article %A D. V. Valovik %A E. V. Zarembo %T The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 74-89 %V 53 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a7/ %G ru %F ZVMMF_2013_53_1_a7
D. V. Valovik; E. V. Zarembo. The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 1, pp. 74-89. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a7/
