The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 1, pp. 74-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of plane monochromatic TM waves propagating in a layer with an arbitrary nonlinearity is considered. The layer is placed between two semi-infinite media. Surface waves propagating along the material interface are sought. The physical problem is reduced to solving a nonlinear eigenvalue transmission problem for a system of two ordinary differential equations. A theorem on the existence and localization of at least one eigenvalue is proven. On the basis of this theorem, a method for finding approximate eigenvalues of the considered problem is proposed. Numerical results for Kerr and saturation nonlinearities are presented as examples.
@article{ZVMMF_2013_53_1_a7,
     author = {D. V. Valovik and E. V. Zarembo},
     title = {The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for {TM} waves propagating in a layer with arbitrary nonlinearity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {74--89},
     year = {2013},
     volume = {53},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a7/}
}
TY  - JOUR
AU  - D. V. Valovik
AU  - E. V. Zarembo
TI  - The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 74
EP  - 89
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a7/
LA  - ru
ID  - ZVMMF_2013_53_1_a7
ER  - 
%0 Journal Article
%A D. V. Valovik
%A E. V. Zarembo
%T The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 74-89
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a7/
%G ru
%F ZVMMF_2013_53_1_a7
D. V. Valovik; E. V. Zarembo. The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 1, pp. 74-89. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a7/

[1] Adams M., Vvedenie v teoriyu opticheskikh volnovodov, Mir, M., 1984

[2] Akhmediev N. N., Ankevich A., Solitony, Fizmatlit, M., 2003

[3] Shen I. R., Printsipy nelineinoi optiki, Nauka, M., 1989

[4] Ponath N. E., Stegeman G. I. (eds.), Nonlinear surface electromagnetic phenomena, Modern problems in condensed matter sciences, 29, Elsevier Sci. Publish., North-Holland, 1991 | DOI

[5] Smirnov Yu. G., Valovik D. V., Electromagnetic wave propagation in nonlinear layered waveguide structures, PSU Press, Penza, 2011

[6] Joannopoulos J. D., Johnson S. G., Winn J. N., Meade R. D., Photonic crystals. Molding the flow of light, Princeton University Press, Princeton and Oxford, 2008 | Zbl

[7] Valovik D. V., Smirnov Yu. G., “O rasprostranenii TM-polyarizovannykh elektromagnitnykh voln v nelineinom sloe s nelineinostyu, vyrazhennoi zakonom Kerra”, Zh. vychisl. matem. i matem. fiz., 48:12 (2008), 2186–2194 | MR

[8] Valovik D. V., Smirnov Yu. G., Rasprostranenie elektromagnitnykh voln v nelineinykh sloistykh sredakh, Izd-vo PGU, Penza, 2010

[9] Joseph R. I., Christodoulides D. N., “Exact field decomposition for TM waves in nonlinear media”, Optics Letters, 12:10 (1987), 826–828 | DOI

[10] Schurmann H. W., Serov V. S., Shestopalov Yu. V., “TE-polarized waves guided by a lossless nonlinear three-layer structure”, Phys. Rev. E, 58:1 (1998), 1040–1050 | DOI

[11] Vainshtein L. A., Elektromagnitnye volny, Radio i svyaz, M., 1988

[12] Delone N. B., Vzaimodeistvie lazernogo izlucheniya s veschestvom, Nauka, M., 1989

[13] Valovik D. V., Smirnov Yu. G., “Nelineinye effekty v zadache o rasprostranenii elektromagnitnykh TM-voln v sloe s kerrovskoi nelineinostyu”, Radiotekhn. i elektronika, 56:3 (2011), 309–314

[14] Schurmann H. W., Smirnov Yu. G., Shestopalov Yu. V., “Propagation of TE waves in cylindrical nonlinear dielectric waveguides”, Phys. Rev. E, 71:1–2 (2005), 016614-1–016614-10 | DOI

[15] Valovik D. V., “Zadacha o rasprostranenii elektromagnitnykh TM-voln v sloe s proizvolnoi nelineinostyu”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1729–1739 | MR

[16] Erugin N. P., Kniga dlya chteniya po obschemu kursu differentsialnykh uravnenii, Nauka i tekhn., Minsk, 1979 | MR | Zbl

[17] Valovik D. V., “Rasprostranenie elektromagnitnykh TE-voln v sloe iz nelineinogo metamateriala”, Radiotekhn. i elektronika, 56:5 (2011), 587–599

[18] Valovik D. V., “Rasprostranenie elektromagnitnykh TE-voln v nelineinoi srede s nasyscheniem”, Radiotekhn. i elektronika, 56:11 (2011), 1329–1335

[19] Volkov E. A., “Ob issledovanii i reshenii raznostnym metodom nelineinykh zadach dlya obyknovennogo differentsialnogo uravneniya”, Tr. MIAN SSSR, 140, 1976, 103–129 | Zbl

[20] Zarembo E. V., “Chislennyi metod resheniya nelineinoi kraevoi zadachi na sobstvennye znacheniya dlya elektromagnitnykh TE-voln, rasprostranyayuschikhsya v sloe s proizvolnoi nelineinostyu”, Izv. VUZov. Povolzhskii region. Fiz.-matem. nauki, 2012, no. 2, 59–74