Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 1, pp. 47-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The development of efficient computational methods for synthesizing controls of high-dimensional linear systems is an important problem in theoretical mathematics and its applications. This is especially true for systems with geometrical constraints imposed on the controls and uncertain disturbances. It is well known that the synthesis of target controls under the indicated conditions is based on the construction of weakly invariant sets (reverse reachable sets) generated by the solving equations of the process under study. Methods for constructing such equations and corresponding invariant sets are described, and the computational features for high-dimensional systems are discussed. The approaches proposed are based on the previously developed theory and methods of ellipsoidal approximations of multivalued functions.
@article{ZVMMF_2013_53_1_a3,
     author = {A. N. Daryin and A. B. Kurzhanski},
     title = {Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {47--57},
     year = {2013},
     volume = {53},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a3/}
}
TY  - JOUR
AU  - A. N. Daryin
AU  - A. B. Kurzhanski
TI  - Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 47
EP  - 57
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a3/
LA  - ru
ID  - ZVMMF_2013_53_1_a3
ER  - 
%0 Journal Article
%A A. N. Daryin
%A A. B. Kurzhanski
%T Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 47-57
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a3/
%G ru
%F ZVMMF_2013_53_1_a3
A. N. Daryin; A. B. Kurzhanski. Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 1, pp. 47-57. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a3/

[1] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[2] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[3] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, SSSM, Springer, N. Y., 1988 | MR | Zbl

[4] Kurzhanskii A. B., Nikonov O. I., “Evolyutsionnye uravneniya dlya puchkov traektorii sintezirovannykh sistem upravleniya”, Dokl. AN, 333:4 (1993), 578–581 | MR

[5] Kurzhanskii A. B., “Alternirovannyi integral Pontryagina v teorii sinteza upravlenii”, Tr. MIAN, 224, 1999, 234–248 | MR

[6] Kurzhanski A. B., Vályi I., Ellipsoidal calculus for estimation and control, SCFA, Birkhauser, Boston, 1997 | MR

[7] Kurzhanski A. B., Varaiya P., “Ellipsoidal techniques for reachability analysis. II: Internal approximations. Box-valued constraints”, Optimizat. meth. and software, 17:2 (2002), 207–237 | DOI | MR | Zbl

[8] Vostrikov I. V., Darin A. N., Kurzhanskii A. B., “Uspokoenie mnogozvennoi kolebatelnoi sistemy v usloviyakh neopredelennykh vozmuschenii”, Differents. ur-niya, 42:11 (2006), 1452–1463 | MR | Zbl

[9] Basar T., Olsder J., Dynamic noncooperative game theory, Academic Press, N. Y., 1982 | MR

[10] Kurzhanskiy A. A., Varaiya P., Ellipsoidal toolbox, , 2005 http://code.google.com/p/ellipsoids/