О максимальной мощности множества, $(k,l)$-свободного от сумм, в абелевой группе
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 1, pp. 154-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2013_53_1_a12,
     author = {V. G. Sargsyan},
     title = {{\CYRO} {\cyrm}{\cyra}{\cyrk}{\cyrs}{\cyri}{\cyrm}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrishrt} {\cyrm}{\cyro}{\cyrshch}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrm}{\cyrn}{\cyro}{\cyrzh}{\cyre}{\cyrs}{\cyrt}{\cyrv}{\cyra}, $(k,l)$-{\cyrs}{\cyrv}{\cyro}{\cyrb}{\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyro}{\cyrt} {\cyrs}{\cyru}{\cyrm}{\cyrm}, {\cyrv} {\cyra}{\cyrb}{\cyre}{\cyrl}{\cyre}{\cyrv}{\cyro}{\cyrishrt} {\cyrg}{\cyrr}{\cyru}{\cyrp}{\cyrp}{\cyre}},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {154--162},
     year = {2013},
     volume = {53},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a12/}
}
TY  - JOUR
AU  - V. G. Sargsyan
TI  - О максимальной мощности множества, $(k,l)$-свободного от сумм, в абелевой группе
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 154
EP  - 162
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a12/
LA  - ru
ID  - ZVMMF_2013_53_1_a12
ER  - 
%0 Journal Article
%A V. G. Sargsyan
%T О максимальной мощности множества, $(k,l)$-свободного от сумм, в абелевой группе
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 154-162
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a12/
%G ru
%F ZVMMF_2013_53_1_a12
V. G. Sargsyan. О максимальной мощности множества, $(k,l)$-свободного от сумм, в абелевой группе. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 1, pp. 154-162. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a12/

[1] Diananda P. H., Yap H. P., “Maximal sum-free sets of elements of finite groups”, Proc. Japan Acad., 45 (1969), 1–5 | DOI | MR | Zbl

[2] Green B., Ruzsa I., “Sum-free sets in abelian groups”, Israel J. Math., 147 (2005), 157–188 | DOI | MR | Zbl

[3] Bier T., Chin A. Y. M., “On $(k, l)$-sets in cyclic groups of odd prime order”, Bull. Austral. Math. Soc., 63:1 (2001), 115–121 | DOI | MR | Zbl

[4] Plagne A., “Maximal $(k, l)$-free sets in $Z/pZ$ are arithmetic progressions”, Bull. Austral. Math. Soc., 65 (2002), 137–144 | DOI | MR | Zbl

[5] Hamidoune Y. O., Plagne A., “A new critical pair theorem applied to sum-free sets in Abelian groups”, Comment. Math. Helv., 79 (2004), 183–207 | DOI | MR | Zbl

[6] Bajnok B., “On the maximum size of a $(k, l)$-sum-free subset of an abelian group”, J. Number Theory, 5:6 (2009), 953–971 | DOI | MR | Zbl

[7] Olson J. E., “On the sum of two sets in a group”, J. Number Theory, 18 (1984), 110–120 | DOI | MR | Zbl