Точные псевдополиномиальные алгоритмы для некоторых труднорешаемых задач поиска подпоследовательности векторов
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 1, pp. 143-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2013_53_1_a11,
     author = {A. V. Kel'manov and S. M. Romanchenko and S. A. Khamidullin},
     title = {{\CYRT}{\cyro}{\cyrch}{\cyrn}{\cyrery}{\cyre} {\cyrp}{\cyrs}{\cyre}{\cyrv}{\cyrd}{\cyro}{\cyrp}{\cyro}{\cyrl}{\cyri}{\cyrn}{\cyro}{\cyrm}{\cyri}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyre} {\cyra}{\cyrl}{\cyrg}{\cyro}{\cyrr}{\cyri}{\cyrt}{\cyrm}{\cyrery} {\cyrd}{\cyrl}{\cyrya} {\cyrn}{\cyre}{\cyrk}{\cyro}{\cyrt}{\cyro}{\cyrr}{\cyrery}{\cyrh} {\cyrt}{\cyrr}{\cyru}{\cyrd}{\cyrn}{\cyro}{\cyrr}{\cyre}{\cyrsh}{\cyra}{\cyre}{\cyrm}{\cyrery}{\cyrh} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch} {\cyrp}{\cyro}{\cyri}{\cyrs}{\cyrk}{\cyra} {\cyrp}{\cyro}{\cyrd}{\cyrp}{\cyro}{\cyrs}{\cyrl}{\cyre}{\cyrd}{\cyro}{\cyrv}{\cyra}{\cyrt}{\cyre}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrv}{\cyre}{\cyrk}{\cyrt}{\cyro}{\cyrr}{\cyro}{\cyrv}},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {143--153},
     year = {2013},
     volume = {53},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a11/}
}
TY  - JOUR
AU  - A. V. Kel'manov
AU  - S. M. Romanchenko
AU  - S. A. Khamidullin
TI  - Точные псевдополиномиальные алгоритмы для некоторых труднорешаемых задач поиска подпоследовательности векторов
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 143
EP  - 153
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a11/
LA  - ru
ID  - ZVMMF_2013_53_1_a11
ER  - 
%0 Journal Article
%A A. V. Kel'manov
%A S. M. Romanchenko
%A S. A. Khamidullin
%T Точные псевдополиномиальные алгоритмы для некоторых труднорешаемых задач поиска подпоследовательности векторов
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 143-153
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a11/
%G ru
%F ZVMMF_2013_53_1_a11
A. V. Kel'manov; S. M. Romanchenko; S. A. Khamidullin. Точные псевдополиномиальные алгоритмы для некоторых труднорешаемых задач поиска подпоследовательности векторов. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 1, pp. 143-153. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_1_a11/

[1] Anil K., Jain K., “Data clustering: 50 years beyond k-means”, Pattern Recognition Letters, 31 (2010), 651–666 | DOI

[2] Hastie T., Tibshirani R., Friedman J., The elements of statistical learning: data mining, inference, and prediction, Springer-Verlag, New York, 2001 | MR | Zbl

[3] Gimadi E. X., Kelmanov A. V., Kelmanova M. A., Khamidullin S. A., “Aposteriornoe obnaruzhenie v chislovoi posledovatelnosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sibirsk. zh. industr. matem., 9:1(25) (2006), 55–74 | MR | Zbl

[4] Kelmanov A. V., Mikhailova L. V., “Sovmestnoe obnaruzhenie v kvaziperiodicheskoi posledovatelnosti zadannogo chisla fragmentov iz etalonnogo nabora i ee razbienie na uchastki, vklyuchayuschie serii odinakovykh fragmentov”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 172–189 | MR

[5] Kelmanov A. V., Mikhailova L. V., Khamidullin S. A., “Ob odnoi zadache poiska uporyadochennykh naborov fragmentov v chislovoi posledovatelnosti”, Diskretn. analiz i issledovanie operatsii, 16:4 (2009), 31–46 | MR

[6] Kelmanov A. V., Khamidullin S. A., “Aposteriornoe obnaruzhenie zadannogo chisla odinakovykh podposledovatelnostei v kvaziperiodicheskoi posledovatelnosti”, Zh. vychisl. matem. i matem. fiz., 41:5 (2001), 807–820 | MR

[7] Kel'manov A. V., Jeon B., “A posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train”, IEEE Trans. Sign. Proc., 52:3 (2004), 645–656 | DOI | MR

[8] Kel'manov A. V., Khamidullin S. A., “An algorithm for recognition of a vector alphabet generating a sequence with a quasi-periodic structure”, Pattern Recognition and Image Analysis, 20:4 (2010), 451–458 | DOI

[9] Kelmanov A. V., Pyatkin A. V., “NP-polnota nekotorykh zadach vybora podmnozhestva vektorov”, Diskretn. analiz i issledovanie operatsii, 17:5 (2010), 37–45

[10] Kelmanov A. V., Romanchenko S. M., “Priblizhennyi algoritm resheniya odnoi zadachi poiska podmnozhestva vektorov”, Diskretn. analiz i issledovanie operatsii, 18:1 (2011), 61–69 | MR

[11] Garey M. R., Johnson D. S., Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, 1979 | MR | Zbl

[12] Kelmanov A. V., Romanchenko S. M., “Psevdopolinomialnye algoritmy dlya nekotorykh trudnoreshaemykh zadach poiska podmnozhestva vektorov i klasternogo analiza”, Avtomatika i telemekhan., 2012, no. 2, 156–162

[13] Shenmaier V. V., “Approksimatsionnaya skhema dlya odnoi zadachi poiska podmnozhestva vektorov”, Diskretn. analiz i issledovanie operatsii, 19:2 (2012), 92–100 | MR

[14] Kelmanov A. V., Romanchenko S. M., Khamidullin S. A., “Priblizhennye algoritmy dlya nekotorykh trudnoreshaemykh zadach poiska podposledovatelnosti vektorov”, Diskretn. analiz i issledovanie operatsii, 19:3 (2012), 27–38 | MR