Numerical solutions and solitary wave solutions of fractional KdV equations using modified fractional reduced differential transform method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the modified fractional reduced differential transform method (MFRDTM) has been proposed and it is implemented for solving fractional KdV (Korteweg-de Vries) equations. The fractional derivatives are described in the Caputo sense. In this paper, the reduced differential transform method is modified to be easily employed to solve wide kinds of nonlinear fractional differential equations. In this new approach, the nonlinear term is replaced by its Adomian polynomials. Thus the nonlinear initial-value problem can be easily solved with less computational effort. In order to show the power and effectiveness of the present modified method and to illustrate the pertinent features of the solutions, several fractional KdV equations with different types of nonlinearities are considered. The results reveal that the proposed method is very effective and simple for obtaining approximate solutions of fractional KdV equations.
@article{ZVMMF_2013_53_12_a9,
     author = {S. Saha Ray},
     title = {Numerical solutions and solitary wave solutions of fractional {KdV} equations using modified fractional reduced differential transform method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2062},
     year = {2013},
     volume = {53},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a9/}
}
TY  - JOUR
AU  - S. Saha Ray
TI  - Numerical solutions and solitary wave solutions of fractional KdV equations using modified fractional reduced differential transform method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 2062
VL  - 53
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a9/
LA  - en
ID  - ZVMMF_2013_53_12_a9
ER  - 
%0 Journal Article
%A S. Saha Ray
%T Numerical solutions and solitary wave solutions of fractional KdV equations using modified fractional reduced differential transform method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 2062
%V 53
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a9/
%G en
%F ZVMMF_2013_53_12_a9
S. Saha Ray. Numerical solutions and solitary wave solutions of fractional KdV equations using modified fractional reduced differential transform method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a9/

[1] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993 | MR

[2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London, 1993 | MR | Zbl

[3] I. Podlubny, Fractional Differential Equations, Academic, San Diego, 1999 | MR | Zbl

[4] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent, II”, J. Roy. Astr. Soc., 13 (1967), 529–539 | DOI

[5] M. Caputo, Elasticita e Dissipazione, Zanichelli, Bologna, 1969

[6] S. Saha Ray, R. K. Bera, “Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian decomposition method”, Trans. ASME J. Appl. Mech., 72:2 (2005), 290–295 | DOI | Zbl

[7] S. Saha Ray, A. Patra, “An explicit finite difference scheme for numerical solution of fractional neutron point kinetic equation”, Ann. Nuclear Energ., 41 (2012), 61–66 | DOI

[8] Q. Wang, “Homotopy perturbation method for fractional KdV equation”, Appl. Math. Comput., 190 (2007), 1795–1802 | DOI | MR | Zbl

[9] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic, Boston, 1994 | MR | Zbl

[10] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, New York, 1991 | MR | Zbl

[11] T. R. Taha, M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. III: Numerical Korteweg-de Vries equation”, J. Comput. Phys., 55 (1984), 231–253 | DOI | MR | Zbl

[12] E. Fan, “Extended tanh-function method and its applications to nonlinear equations”, Phys. Lett. A, 277 (2000), 212–218 | DOI | MR | Zbl

[13] S. Saha Ray, “An application of the modified decomposition method for the solution of the coupled Klein–Gordon–Schrodinger equation”, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 1311–1317 | DOI | MR | Zbl

[14] S. Saha Ray, “A numerical solution of the coupled sine-Gordon equation using the modified decomposition method”, Appl. Math. Comput., 175 (2006), 1046–1054 | DOI | MR | Zbl

[15] S. Saha Ray, R. K. Bera, “An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method”, Appl. Math. Comput., 167 (2005), 561–571 | DOI | MR | Zbl

[16] A. M. Wazwaz, Partial Differential Equations: Methods and Applications, Balkema, The Netherlands, 2002 | Zbl

[17] S. J. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman and Hall/CRC, Boca Raton, 2003 | MR | Zbl

[18] J. H. He, “Variational principles for some nonlinear partial differential equations with variable coefficients”, Chaos Solitons Fractals, 19 (2004), 847–851 | DOI | MR | Zbl

[19] J. H. He, Perturbation Methods: Basic and Beyond, Elsevier, Amsterdam, 2006

[20] Y. Keskin, G. Oturanc, “Reduced differential transform method for partial differential equations”, Int. J. Nonlinear Sci. Numer. Simul., 10 (2009), 741–749 | DOI | MR

[21] Y. Keskin, G. Oturanc, “Reduced differential transform method for generalized KDV equations”, Math. Comput. Appl., 15 (2010), 382–393 | MR | Zbl

[22] Y. Keskin, G. Oturanc, “Reduced differential transform method for fractional partial differential equations”, Nonlinear Sci. Lett. A, 2 (2010), 207–217

[23] P. Rosenau, J. M. Hyman, “Compactons: Solitons with finite wavelength”, Phys. Rev. Lett., 70 (1993), 564–567 | DOI | Zbl

[24] Z. M. Odibat, N. T. Shawagfeh, “Generalized Taylor's formula”, Appl. Math. Comput., 186 (2007), 286–293 | DOI | MR | Zbl