@article{ZVMMF_2013_53_12_a9,
author = {S. Saha Ray},
title = {Numerical solutions and solitary wave solutions of fractional {KdV} equations using modified fractional reduced differential transform method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2062},
year = {2013},
volume = {53},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a9/}
}
TY - JOUR AU - S. Saha Ray TI - Numerical solutions and solitary wave solutions of fractional KdV equations using modified fractional reduced differential transform method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 2062 VL - 53 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a9/ LA - en ID - ZVMMF_2013_53_12_a9 ER -
%0 Journal Article %A S. Saha Ray %T Numerical solutions and solitary wave solutions of fractional KdV equations using modified fractional reduced differential transform method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 2062 %V 53 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a9/ %G en %F ZVMMF_2013_53_12_a9
S. Saha Ray. Numerical solutions and solitary wave solutions of fractional KdV equations using modified fractional reduced differential transform method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a9/
[1] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993 | MR
[2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London, 1993 | MR | Zbl
[3] I. Podlubny, Fractional Differential Equations, Academic, San Diego, 1999 | MR | Zbl
[4] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent, II”, J. Roy. Astr. Soc., 13 (1967), 529–539 | DOI
[5] M. Caputo, Elasticita e Dissipazione, Zanichelli, Bologna, 1969
[6] S. Saha Ray, R. K. Bera, “Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian decomposition method”, Trans. ASME J. Appl. Mech., 72:2 (2005), 290–295 | DOI | Zbl
[7] S. Saha Ray, A. Patra, “An explicit finite difference scheme for numerical solution of fractional neutron point kinetic equation”, Ann. Nuclear Energ., 41 (2012), 61–66 | DOI
[8] Q. Wang, “Homotopy perturbation method for fractional KdV equation”, Appl. Math. Comput., 190 (2007), 1795–1802 | DOI | MR | Zbl
[9] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic, Boston, 1994 | MR | Zbl
[10] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, New York, 1991 | MR | Zbl
[11] T. R. Taha, M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. III: Numerical Korteweg-de Vries equation”, J. Comput. Phys., 55 (1984), 231–253 | DOI | MR | Zbl
[12] E. Fan, “Extended tanh-function method and its applications to nonlinear equations”, Phys. Lett. A, 277 (2000), 212–218 | DOI | MR | Zbl
[13] S. Saha Ray, “An application of the modified decomposition method for the solution of the coupled Klein–Gordon–Schrodinger equation”, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 1311–1317 | DOI | MR | Zbl
[14] S. Saha Ray, “A numerical solution of the coupled sine-Gordon equation using the modified decomposition method”, Appl. Math. Comput., 175 (2006), 1046–1054 | DOI | MR | Zbl
[15] S. Saha Ray, R. K. Bera, “An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method”, Appl. Math. Comput., 167 (2005), 561–571 | DOI | MR | Zbl
[16] A. M. Wazwaz, Partial Differential Equations: Methods and Applications, Balkema, The Netherlands, 2002 | Zbl
[17] S. J. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman and Hall/CRC, Boca Raton, 2003 | MR | Zbl
[18] J. H. He, “Variational principles for some nonlinear partial differential equations with variable coefficients”, Chaos Solitons Fractals, 19 (2004), 847–851 | DOI | MR | Zbl
[19] J. H. He, Perturbation Methods: Basic and Beyond, Elsevier, Amsterdam, 2006
[20] Y. Keskin, G. Oturanc, “Reduced differential transform method for partial differential equations”, Int. J. Nonlinear Sci. Numer. Simul., 10 (2009), 741–749 | DOI | MR
[21] Y. Keskin, G. Oturanc, “Reduced differential transform method for generalized KDV equations”, Math. Comput. Appl., 15 (2010), 382–393 | MR | Zbl
[22] Y. Keskin, G. Oturanc, “Reduced differential transform method for fractional partial differential equations”, Nonlinear Sci. Lett. A, 2 (2010), 207–217
[23] P. Rosenau, J. M. Hyman, “Compactons: Solitons with finite wavelength”, Phys. Rev. Lett., 70 (1993), 564–567 | DOI | Zbl
[24] Z. M. Odibat, N. T. Shawagfeh, “Generalized Taylor's formula”, Appl. Math. Comput., 186 (2007), 286–293 | DOI | MR | Zbl