@article{ZVMMF_2013_53_12_a8,
author = {G. V. Alekseev},
title = {Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2044--2061},
year = {2013},
volume = {53},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a8/}
}
TY - JOUR AU - G. V. Alekseev TI - Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 2044 EP - 2061 VL - 53 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a8/ LA - ru ID - ZVMMF_2013_53_12_a8 ER -
%0 Journal Article %A G. V. Alekseev %T Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 2044-2061 %V 53 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a8/ %G ru %F ZVMMF_2013_53_12_a8
G. V. Alekseev. Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2044-2061. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a8/
[1] Pendry J. B., Shurig D., Smith D. R., “Controlling electromagnetic fields”, Science, 312 (2006), 1780–1782 | DOI | MR | Zbl
[2] Chen H., Wi B.-I., Zhang B., Kong J. A., “Electromagnetic wave interactions with a methamaterial cloak”, Phys. Rev. Lett., 99 (2007), 063903 | DOI
[3] Cummer S. A., Popa B. I., Schurig D. et al., “Scattering theory derivation of a 3D acoustic cloaking shell”, Phys. Rev. Letters, 100 (2008), 024301 | DOI
[4] Alekseev G. V., Romanov V. G., “Ob odnom klasse nerasseivayuschikh akusticheskikh obolochek dlya modeli anizotropnoi akustiki”, Sib. zhurn. industr. matem., 14:2 (2011), 1–6
[5] Dubinov A. E., Mytareva L. A., “Maskirovka materialnykh tel metodom volnovogo obtekaniya”, Uspekhi fiz. nauk, 180:5 (2010), 475–501 | DOI
[6] Bobrovnitskii Yu. I., “Nauchnye osnovy akusticheskogo stelsa”, Dokl. AN, 442:1 (2012), 41–44
[7] Alekseev G. V., “Optimizatsiya v zadachakh maskirovki materialnykh tel metodom volnovogo obtekaniya”, Dokl. AN, 449:6 (2013), 652–656 | DOI | MR
[8] Alekseev G. V., “Cloaking via impedance boundary condition for 2-D Helmholtz equation”, Appl. Anal., 93 (2013)
[9] Alekseev G. V., Brizitskii R. V., “Teoreticheskii analiz ekstremalnykh zadach granichnogo upravleniya dlya uravnenii Maksvella”, Sib. zhurn. industr. matem., 14:1 (2011), 3–16
[10] Alekseev G. V., Brizitskii R. V., Romanov V. G., “Otsenki ustoichivosti reshenii zadach granichnogo upravleniya dlya uravnenii Maksvella pri smeshannykh granichnykh usloviyakh”, Dokl. AN, 447:1 (2012), 7–12
[11] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vysshaya shkola, M., 1991
[12] Leontovich M. A., Teoreticheskaya fizika. Izbrannye trudy, Nauka, M., 1985, 351–355
[13] Zorkal S. M., Conna M. C., Lokatsionnye zadachi teorii rasprostraneniya voln (difraktsiya i fokusirovka), Izd-vo NGU, Novosibirsk, 2003
[14] Caconi F., Colton D., Monk P., “The determination of the surface conductivity of a partially coated dielectric”, SIAM J. Appl. Math., 65 (2005), 767–789 | DOI | MR
[15] Caconi F., Nakamuza G., Sini M., Zeev N., “The identification of a partially coated dielectric medium from far field measurements”, Appl. Anal., 89 (2010), 29–47 | DOI | MR
[16] Beilina L., Klibanov M. V., “A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data”, J. Inverse III-Posed Porlbmes, 20 (2012), 513–565 | MR
[17] Beilina L., Klibanov M. V., Approximate global convergence and adaptivity for coefficient inverse problems, Springer, New York, 2012 | Zbl
[18] Alekseev G. V., Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoi gidrodinamiki, Nauchnyi Mir, M., 2010
[19] Hanner P., “On the uniqueness of the shape of a penetrable anisotropic obstacle”, J. Comp. Appl. Math., 116 (2000), 167–180 | DOI | MR
[20] Melenk J. M., Sauter S., “Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions”, Math. Comp., 79 (2010), 1871–1914 | DOI | MR | Zbl
[21] Alekseev G. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, Dokl. AN, 395:3 (2004), 322–325 | MR
[22] Alekseev G. V., Tereshko D. A., “O zadache identifikatsii dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 49:10 (2009), 1796–1811 | MR | Zbl
[23] Tikhomirov V. M., Ioffe A. D., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR
[24] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999
[25] Sea Zh., Optimizatsiya, teoriya i algoritmy, Mir, M., 1973