Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2044-2061 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Control problems are considered for a two-dimensional electromagnetic field model describing electromagnetic wave scattering in a unbounded homogeneous medium containing an anisotropic permeable inclusion with a partially covered (cloaked) boundary. The control is a function involved in the impedance boundary condition on the covered part of the boundary. The solvability of the original mixed transmission problem for the two-dimensional Helmholtz equation and of the control problems is proved. Optimality systems describing necessary extremum conditions are derived. The uniqueness and stability of optimal solutions with respect to certain perturbations of the cost functional and the incident wave are established.
@article{ZVMMF_2013_53_12_a8,
     author = {G. V. Alekseev},
     title = {Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2044--2061},
     year = {2013},
     volume = {53},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a8/}
}
TY  - JOUR
AU  - G. V. Alekseev
TI  - Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 2044
EP  - 2061
VL  - 53
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a8/
LA  - ru
ID  - ZVMMF_2013_53_12_a8
ER  - 
%0 Journal Article
%A G. V. Alekseev
%T Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 2044-2061
%V 53
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a8/
%G ru
%F ZVMMF_2013_53_12_a8
G. V. Alekseev. Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2044-2061. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a8/

[1] Pendry J. B., Shurig D., Smith D. R., “Controlling electromagnetic fields”, Science, 312 (2006), 1780–1782 | DOI | MR | Zbl

[2] Chen H., Wi B.-I., Zhang B., Kong J. A., “Electromagnetic wave interactions with a methamaterial cloak”, Phys. Rev. Lett., 99 (2007), 063903 | DOI

[3] Cummer S. A., Popa B. I., Schurig D. et al., “Scattering theory derivation of a 3D acoustic cloaking shell”, Phys. Rev. Letters, 100 (2008), 024301 | DOI

[4] Alekseev G. V., Romanov V. G., “Ob odnom klasse nerasseivayuschikh akusticheskikh obolochek dlya modeli anizotropnoi akustiki”, Sib. zhurn. industr. matem., 14:2 (2011), 1–6

[5] Dubinov A. E., Mytareva L. A., “Maskirovka materialnykh tel metodom volnovogo obtekaniya”, Uspekhi fiz. nauk, 180:5 (2010), 475–501 | DOI

[6] Bobrovnitskii Yu. I., “Nauchnye osnovy akusticheskogo stelsa”, Dokl. AN, 442:1 (2012), 41–44

[7] Alekseev G. V., “Optimizatsiya v zadachakh maskirovki materialnykh tel metodom volnovogo obtekaniya”, Dokl. AN, 449:6 (2013), 652–656 | DOI | MR

[8] Alekseev G. V., “Cloaking via impedance boundary condition for 2-D Helmholtz equation”, Appl. Anal., 93 (2013)

[9] Alekseev G. V., Brizitskii R. V., “Teoreticheskii analiz ekstremalnykh zadach granichnogo upravleniya dlya uravnenii Maksvella”, Sib. zhurn. industr. matem., 14:1 (2011), 3–16

[10] Alekseev G. V., Brizitskii R. V., Romanov V. G., “Otsenki ustoichivosti reshenii zadach granichnogo upravleniya dlya uravnenii Maksvella pri smeshannykh granichnykh usloviyakh”, Dokl. AN, 447:1 (2012), 7–12

[11] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vysshaya shkola, M., 1991

[12] Leontovich M. A., Teoreticheskaya fizika. Izbrannye trudy, Nauka, M., 1985, 351–355

[13] Zorkal S. M., Conna M. C., Lokatsionnye zadachi teorii rasprostraneniya voln (difraktsiya i fokusirovka), Izd-vo NGU, Novosibirsk, 2003

[14] Caconi F., Colton D., Monk P., “The determination of the surface conductivity of a partially coated dielectric”, SIAM J. Appl. Math., 65 (2005), 767–789 | DOI | MR

[15] Caconi F., Nakamuza G., Sini M., Zeev N., “The identification of a partially coated dielectric medium from far field measurements”, Appl. Anal., 89 (2010), 29–47 | DOI | MR

[16] Beilina L., Klibanov M. V., “A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data”, J. Inverse III-Posed Porlbmes, 20 (2012), 513–565 | MR

[17] Beilina L., Klibanov M. V., Approximate global convergence and adaptivity for coefficient inverse problems, Springer, New York, 2012 | Zbl

[18] Alekseev G. V., Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoi gidrodinamiki, Nauchnyi Mir, M., 2010

[19] Hanner P., “On the uniqueness of the shape of a penetrable anisotropic obstacle”, J. Comp. Appl. Math., 116 (2000), 167–180 | DOI | MR

[20] Melenk J. M., Sauter S., “Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions”, Math. Comp., 79 (2010), 1871–1914 | DOI | MR | Zbl

[21] Alekseev G. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, Dokl. AN, 395:3 (2004), 322–325 | MR

[22] Alekseev G. V., Tereshko D. A., “O zadache identifikatsii dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 49:10 (2009), 1796–1811 | MR | Zbl

[23] Tikhomirov V. M., Ioffe A. D., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR

[24] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[25] Sea Zh., Optimizatsiya, teoriya i algoritmy, Mir, M., 1973