Smooth finite-dimensional approximations of distributed optimization problems via control discretization
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2029-2043 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Approximating finite-dimensional mathematical programming problems are studied that arise from piecewise constant discretization of controls in the optimization of distributed systems of a fairly broad class. The smoothness of the approximating problems is established. Gradient formulas are derived that make use of the analytical solution of the original control system and its adjoint, thus providing an opportunity for algorithmic separation of numerical optimization and the task of solving a controlled initial-boundary value problem. The approximating problems are proved to converge to the original optimization problem with respect to the functional as the discretization is refined. The application of the approach to optimization problems is illustrated by solving the semilinear wave equation controlled by applying an integral criterion. The results of numerical experiments are analyzed.
@article{ZVMMF_2013_53_12_a7,
     author = {A. V. Chernov},
     title = {Smooth finite-dimensional approximations of distributed optimization problems via control discretization},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2029--2043},
     year = {2013},
     volume = {53},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a7/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - Smooth finite-dimensional approximations of distributed optimization problems via control discretization
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 2029
EP  - 2043
VL  - 53
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a7/
LA  - ru
ID  - ZVMMF_2013_53_12_a7
ER  - 
%0 Journal Article
%A A. V. Chernov
%T Smooth finite-dimensional approximations of distributed optimization problems via control discretization
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 2029-2043
%V 53
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a7/
%G ru
%F ZVMMF_2013_53_12_a7
A. V. Chernov. Smooth finite-dimensional approximations of distributed optimization problems via control discretization. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2029-2043. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a7/

[1] Vasilev F. P., Metody optimizatsii, MTsNMO, M., 2011

[2] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965 | MR

[3] Volin Yu. M., Ostrovskii G. M., “O metode posledovatelnykh priblizhenii rascheta optimalnykh rezhimov nekotorykh sistem s raspredelennymi parametrami”, Avtomatika i telemekhanika, XXVI:7 (1965), 1197–1204

[4] Plotnikov V. I., “O skhodimosti konechnomernykh priblizhenii (v zadache ob optimalnom nagreve neodnorodnogo tela proizvolnoi formy)”, Zh. vychisl. matem. i matem. fiz., 8:1 (1968), 136–157 | MR | Zbl

[5] Kerimov A. K., “Ob approksimatsiyakh po Galerkinu zadach optimalnogo upravleniya dlya sistem s raspredelennymi parametrami parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 19:4 (1979), 851–865 | MR | Zbl

[6] Vasilev F. P., Ishmukhametov A. Z., Potapov M. M., Obobschennyi metod momentov v zadachakh optimalnogo upravleniya, MGU, M., 1989 | MR

[7] Chryssovergchi I., “Mixed discretization-optimization methods for relaxed optimal control of nonlinear parabolic systems”, Proc. 6th WSEAS Internat. Conference on Simulation, Modelling and Optimization (Lisbon, Portugal, 2006), 41–47

[8] Gornov A. Yu., “Chislennye metody issledovaniya zadach optimalnogo upravleniya v mekhanicheskikh sistemakh”, Mekhatronika, avtomatizatsiya, upravlenie, 2010, no. 8 (113), 2–7

[9] Teo K. L., Goh C. J., Wong K. H., A unified computational approach to optimal control problems, Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Scientific Technical, Harlow; John Wiley Sons, Inc., New York, 1991 | MR | Zbl

[10] Blatt M., Schittkowski K., PDECON: A Fortran code for solving optimal control problems based on ordinary, algebraic and partial differential equations, Report, Depart. of Mathematics, Univ. of Bayreuth, 1997

[11] Sadek I., Kucuk I., “A robust technique for solving optimal control of coupled Burger's equations”, IMA J. Math. Control Inf., 28:3 (2011), 239–250 | DOI | MR | Zbl

[12] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[13] Arutyunov A. V., “Vozmuscheniya ekstremalnykh zadach s ogranicheniyami i neobkhodimye usloviya optimalnosti”, Itogi nauki i tekhn. Ser. Mat. anal., 27, 1989, 147–235

[14] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[15] Sumin V. I., “Funktsionalno-operatornye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami”, Dokl. AN SSSR, 305:5 (1989), 1056–1059 | Zbl

[16] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 3–21 | Zbl

[17] Afanasev A. P., Dikusar V. V., Milyutin A. A., Chukanov S. A., Neobkhodimoe uslovie v optimalnom upravlenii, Nauka, M., 1990 | MR

[18] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vyssh. uchebn. zavedenii. Matematika, 2011, no. 3, 95–107 | MR

[19] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vyssh. uchebn. zavedenii. Matematika, 2012, no. 3, 62–73

[20] Chernov A. V., “O dostatochnykh usloviyakh upravlyaemosti nelineinykh raspredelennykh sistem”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1400–1414 | Zbl

[21] Chernov A. V., “Ob upravlyaemosti nelineinykh raspredelennykh sistem na mnozhestve konechnomernykh approksimatsii upravleniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 1, 83–98

[22] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl

[23] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. ur-niya, 34:10 (1998), 1402–1411 | MR | Zbl

[24] Chernov A. V., “O skhodimosti metoda uslovnogo gradienta v raspredelennykh zadachakh optimizatsii”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1616–1629 | MR | Zbl

[25] Chernov A. V., “O nekotorykh svoistvakh skhodimosti v banakhovykh idealnykh prostranstvakh”, Vestnik NNGU im. N. I. Lobachevskogo, 2013, no. 2(1), 138–141 | MR

[26] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR