Numerical methods for solving applied optimal control problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2014-2028
Voir la notice de l'article provenant de la source Math-Net.Ru
For an optimal control problem with state constraints, an iterative solution method is described based on reduction to a finite-dimensional problem, followed by applying a successive linearization algorithm with the use of an augmented Lagrangian. The efficiency of taking into account state constraints in optimal control computation is illustrated by numerically solving several application problems.
@article{ZVMMF_2013_53_12_a6,
author = {A. Yu. Gornov and A. I. Tyatyushkin and E. A. Finkelshtein},
title = {Numerical methods for solving applied optimal control problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2014--2028},
publisher = {mathdoc},
volume = {53},
number = {12},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a6/}
}
TY - JOUR AU - A. Yu. Gornov AU - A. I. Tyatyushkin AU - E. A. Finkelshtein TI - Numerical methods for solving applied optimal control problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 2014 EP - 2028 VL - 53 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a6/ LA - ru ID - ZVMMF_2013_53_12_a6 ER -
%0 Journal Article %A A. Yu. Gornov %A A. I. Tyatyushkin %A E. A. Finkelshtein %T Numerical methods for solving applied optimal control problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 2014-2028 %V 53 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a6/ %G ru %F ZVMMF_2013_53_12_a6
A. Yu. Gornov; A. I. Tyatyushkin; E. A. Finkelshtein. Numerical methods for solving applied optimal control problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2014-2028. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a6/