Numerical methods for solving applied optimal control problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2014-2028 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an optimal control problem with state constraints, an iterative solution method is described based on reduction to a finite-dimensional problem, followed by applying a successive linearization algorithm with the use of an augmented Lagrangian. The efficiency of taking into account state constraints in optimal control computation is illustrated by numerically solving several application problems.
@article{ZVMMF_2013_53_12_a6,
     author = {A. Yu. Gornov and A. I. Tyatyushkin and E. A. Finkelshtein},
     title = {Numerical methods for solving applied optimal control problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2014--2028},
     year = {2013},
     volume = {53},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a6/}
}
TY  - JOUR
AU  - A. Yu. Gornov
AU  - A. I. Tyatyushkin
AU  - E. A. Finkelshtein
TI  - Numerical methods for solving applied optimal control problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 2014
EP  - 2028
VL  - 53
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a6/
LA  - ru
ID  - ZVMMF_2013_53_12_a6
ER  - 
%0 Journal Article
%A A. Yu. Gornov
%A A. I. Tyatyushkin
%A E. A. Finkelshtein
%T Numerical methods for solving applied optimal control problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 2014-2028
%V 53
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a6/
%G ru
%F ZVMMF_2013_53_12_a6
A. Yu. Gornov; A. I. Tyatyushkin; E. A. Finkelshtein. Numerical methods for solving applied optimal control problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2014-2028. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a6/

[1] Tyatyushkin A. I., Mnogometodnaya tekhnologiya optimizatsii upravlyaemykh sistem, Nauka, Novosibirsk, 2006

[2] Tyatyushkin A. I., Chislennye metody i programmnye sredstva optimizatsii upravlyaemykh sistem, Nauka, Novosibirsk, 1992 | MR | Zbl

[3] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[4] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[5] Popov B. C., Fedorenko R. P., O standartnoi programme resheniya zadach optimalnogo upravleniya, Preprint IPM AH SSSR, No 100, M., 1983, 32 pp.

[6] Grachev N. I., Filkov A. N., Reshenie zadach optimalnogo upravleniya v sisteme DISO, VTs AN SSSR, M., 1986, 66 pp.

[7] Gabasov R., Kirillova F. M., Tyatyushkin A. I., Konstruktivnye metody optimizatsii, v. 1, Lineinye zadachi, Universitetskoe, Minsk, 1984 | MR

[8] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985 | MR

[9] Tyatyushkin A. I., “Parallelnye vychisleniya v zadachakh optimalnogo upravleniya”, Sib. zh. vychisl. matem., 3:2 (2000), 181–190

[10] Tyatyushkin A. I., “Mnogometodnaya tekhnologiya dlya rascheta optimalnogo upravleniya”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 59–67 | MR

[11] Matrosov V. M., Tyatyushkin A. I., Abdullin R. Z. i dr., “Pakety programm po chislennym metodam analiza dinamiki sistem i teorii upravleniya”, Pakety prikladnykh programm, Nauka, M., 1986, 18–34

[12] Tyatyushkin A. I., “PPP KONUS dlya optimizatsii nepreryvnykh upravlyaemykh sistem”, Pakety prikladnykh programm: Opyt ispolzovaniya, Nauka, M., 1989, 63–83

[13] Tyatyushkin A. I., Zholudev A. I., Erinchec N. M., “The program system for solving optimal control problems with phase constraints”, Internat. J. Software Engng and knowledge Engng., 3:4 (1993), 487–497 | DOI

[14] Gornov A. Yu., Tyatyushkin A. I., “Programmnaya realizatsiya multimetodnoi tekhnologii dlya zadach optimalnogo upravleniya”, Problemy upravleniya i modelirovaniya v slozhnykh sistemakh, Trudy II Mezhd. konf., Samarskii nauchnyi tsentr RAN, Samara, 2001, 301–307

[15] Zholudev A. I., Tyatyushkin A. I., Erinchek N. M., “Chislennye metody optimizatsii upravlyaemykh sistem”, Izv. AN SSSR. TK, 1989, no. 4, 14–31

[16] Eneev T. M., “O primenenii gradientnogo metoda v zadachakh teorii optimalnogo upravleniya”, Kosmich. issledovaniya, 4:5 (1966), 651–669

[17] Krylov A. I., Chernousko F. L., “Algoritm metoda posledovatelnykh priblizhenii dlya zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 12:1 (1972), 14–34 | MR | Zbl

[18] Lyubushin A. A., Cheonousko F. L., “Metod posledovatelnykh priblizhenii dlya rascheta optimalnogo upravleniya”, Izv. AN SSSR. TK, 1983, no. 2, 141–159

[19] Vasilev O. V., Tyatyushkin A. I., “Ob odnom metode resheniya zadach optimalnogo upravleniya, osnovannom na printsipe maksimuma”, Zh. vychisl. matem. i matem. fiz., 21:6 (1981), 1376–1384 | MR | Zbl

[20] Tyatyushkin A. I., Fedunov B. E., “Vozmozhnosti zaschity ot atakuyuschei rakety zadnei polusfery samoleta vertikalnym manevrom”, Izv. RAN. TiSU, 2006, no. 1, 125–132

[21] Tyatyushkin A. I., Fedunov B. E., “Chislennoe issledovanie svoistv optimalnogo upravleniya v odnoi zadache presledovaniya”, Izv. RAN. TiSU, 2005, no. 3, 104–113

[22] Tyatyushkin A. I., “A multimethod technique for solving optimal control problem”, J. Optimizat. Letters, 6:7 (2012), 1335–1347 | DOI | MR | Zbl

[23] Isaev V. K., Sonin V. V., “Novyi podkhod k probleme approksimatsii i ego prilozheniya k variatsionnym i minimaksnym zadacham”, Tr. TsAGI, 1646, 1975

[24] Ivashkevich A. K. i dr., Mnogorazovaya transportnaya kosmicheskaya sistema SShA “Speis Shattl”, v. 2, Orbitalnyi samolet, M., 1976