Shooting method for solving equilibrium programming problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2008-2013 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new iterative method is proposed for solving equilibrium programming problems. The sequence of points it generates is proved to converge weakly to the solution set of the equilibrium problem under study. If the initial point has at least one projection onto the solution set of the equilibrium problem, the sequence generated by the method is shown to converge strongly to the set of these projections. The partial gradient of the initial data is assumed to be invertible and strictly monotone, which differs from the classical skew-symmetry condition.
@article{ZVMMF_2013_53_12_a5,
     author = {B. A. Budak},
     title = {Shooting method for solving equilibrium programming problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2008--2013},
     year = {2013},
     volume = {53},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a5/}
}
TY  - JOUR
AU  - B. A. Budak
TI  - Shooting method for solving equilibrium programming problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 2008
EP  - 2013
VL  - 53
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a5/
LA  - ru
ID  - ZVMMF_2013_53_12_a5
ER  - 
%0 Journal Article
%A B. A. Budak
%T Shooting method for solving equilibrium programming problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 2008-2013
%V 53
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a5/
%G ru
%F ZVMMF_2013_53_12_a5
B. A. Budak. Shooting method for solving equilibrium programming problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2008-2013. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a5/

[1] Antipin A. S., “Vychislenie nepodvizhnykh tochek ekstremalnykh otobrazhenii pri pomoschi metodov gradientnogo tipa”, Zh. vychisl. matem. i matem. fiz., 37:1 (1997), 42–53 | MR | Zbl

[2] Antipin A. S., “Ravnovesnoe programmirovanie: metody gradientnogo tipa”, Avtomatika i telemekhanika, 1997, no. 8, 125–137 | MR

[3] Antipin A. S., “Ravnovesnoe programmirovanie: proksimalnye metody”, Zh. vychisl. matem. i matem. fiz., 37:11 (1997), 1327–1339 | MR | Zbl

[4] Antipin A. S., “Differentsialnyi metod linearizatsii v ravnovesnom programmirovanii”, Differents. ur-niya, 34:11 (1998), 1445–1458 | MR | Zbl

[5] Antipin A. S., Budak B. A., Vasilev F. P., “Nepreryvnyi ekstragradientnyi metod pervogo poryadka s peremennoi metrikoi dlya resheniya zadach ravnovesnogo programmirovaniya”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibern., 2003, no. 1, 37–41

[6] Poom K., Somyot P., “Convergence theorems by hybrid methods for monotone mappings and a countable family of nonexpansive mappings and its applications”, Internat. J. Pure and Appl. Math., 70:1 (2011), 81–107 | MR | Zbl

[7] Vasilev F. P., Metody optimizatsii, MTsNMO, 2011

[8] Shpirko S. V., “O suschestvovanii i edinstvennosti resheniya zadachi ravnovesnogo programmirovaniya”, Izv. vyssh. uchebn. zavedenii. Ser. Matematika, 2002, no. 12 (487), 79–83