Cubature formulas for a two-variable function with boundary-layer components
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 1997-2007 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Cubature formulas for evaluating the double integral of a two-variable function with boundary-layer components are constructed and studied. Because of the boundary-layer components, the cubature formulas based on Newton–Cotes formulas become considerably less accurate. Analogues of the trapezoidal and Simpson rules that are exact for the boundary-layer components are constructed. Error estimates for the constructed formulas are derived that are uniform in the gradients of the integrand in the boundary layers.
@article{ZVMMF_2013_53_12_a4,
     author = {A. I. Zadorin},
     title = {Cubature formulas for a two-variable function with boundary-layer components},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1997--2007},
     year = {2013},
     volume = {53},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a4/}
}
TY  - JOUR
AU  - A. I. Zadorin
TI  - Cubature formulas for a two-variable function with boundary-layer components
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1997
EP  - 2007
VL  - 53
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a4/
LA  - ru
ID  - ZVMMF_2013_53_12_a4
ER  - 
%0 Journal Article
%A A. I. Zadorin
%T Cubature formulas for a two-variable function with boundary-layer components
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1997-2007
%V 53
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a4/
%G ru
%F ZVMMF_2013_53_12_a4
A. I. Zadorin. Cubature formulas for a two-variable function with boundary-layer components. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 1997-2007. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a4/

[1] Berezin I. S., Zhidkov N. P., Metody vychislenii, Nauka, M., 1966

[2] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[3] Zadorin A. I., Zadorin N. A., “Kvadraturnye formuly dlya funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1952–1962 | MR | Zbl

[4] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[5] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, Revised Edition, World Scientific Publishing, Singapore, 2012 | MR

[6] Roos H. G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convection-Diffusion-Reaction and Flow Problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl

[7] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Monographs and Surveys in Pure and Applied Mathematics, 140, Chapman and Hall/CRC, Boca Raton, 2009 | MR | Zbl

[8] Zadorin A. I., Zadorin N. A., “Interpolyatsiya funktsii s pogransloinymi sostavlyayuschimi i ee primenenie v dvukhsetochnom metode”, Sibirskie elektronnye matematicheskie izvestiya, 8 (2011), 247–267 | MR

[9] Zadorin A. I., Zadorin N. A., “Splain-interpolyatsiya na ravnomernoi setke funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 221–233 | MR | Zbl

[10] Zadorin A. I., “Spline interpolation of functions with a boundary layer component”, Internat. J. Numer. Anal. And Modeling. Series B, 2:2–3 (2011), 262–279 | MR | Zbl

[11] Kalitkin H. H., Chislennye metody, Nauka, M., 1978 | MR