Oblique projectors and relative forms in image morphology
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2100-2122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New mathematical methods are considered for the morphological analysis of classes of images and for comparative analysis of their forms as invariant (under image-recording conditions) carriers of information about scenes, objects, etc., and about their geometric shapes. The concepts of absolute and relative forms of classes of images and oblique projectors representing them are introduced and examined. These concepts are used to characterize morphological dependences. More specifically, the relative forms are characterized by the morphological independence index, and the absolute forms, by the morphological connectedness index. New methods based on the construction of relative forms of image classes and on the oblique projection technique are described as applied to the comparative analysis of absolute and relative forms of image classes, the morphological filtration of images, the identification of images, the determination of unknown objects in scene images, and other problems.
@article{ZVMMF_2013_53_12_a14,
     author = {Yu. P. Pyt'ev},
     title = {Oblique projectors and relative forms in image morphology},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2100--2122},
     year = {2013},
     volume = {53},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a14/}
}
TY  - JOUR
AU  - Yu. P. Pyt'ev
TI  - Oblique projectors and relative forms in image morphology
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 2100
EP  - 2122
VL  - 53
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a14/
LA  - ru
ID  - ZVMMF_2013_53_12_a14
ER  - 
%0 Journal Article
%A Yu. P. Pyt'ev
%T Oblique projectors and relative forms in image morphology
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 2100-2122
%V 53
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a14/
%G ru
%F ZVMMF_2013_53_12_a14
Yu. P. Pyt'ev. Oblique projectors and relative forms in image morphology. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2100-2122. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a14/

[1] Pytev Yu. P., “Morfologicheskie ponyatiya v zadachakh analiza izobrazhenii”, Dokl. AN SSSR, 224:6 (1975), 1283–1286 | MR | Zbl

[2] Pytev Yu. P., “Morfologicheskii analiz izobrazhenii”, Dokl. AN SSSR, 269:5 (1983), 1061–1064 | MR | Zbl

[3] Pytev Yu. P., “Zadachi morfologicheskogo analiza izobrazhenii”, Matematicheskie metody issledovaniya prirodnykh resursov Zemli iz kosmosa, Nauka, M., 1984

[4] Pyt'ev Yu. P., “Morphological image analysis”, Pattern Recognition and Image Analysis, 3:1 (1993), 19–28 | MR

[5] Pyt'ev Yu. P., “The morphology of color (multispectral) images”, Pattern Recognition and Image Analysis, 7:4 (1997), 467–473 | MR

[6] Pyt'ev Yu. P., “Methods of morphological analysis of color images”, Pattern Recognition and Image Analysis, 8:4 (1998), 517–531 | MR

[7] Pyt'ev Yu. P., Kalinin A. V., Loginov E. O., Smolovik V. V., “On the problem of object detection by black-and-white and color morphologies”, Pattern Recognition and Image Analysis, 8:4 (1998), 532–536 | MR

[8] Pyt'ev Yu. P., Zhivotnikov G. S., “On the methods of possibility theory for morphological image analysis”, Pattern Recognition and Image Analysis, 14:1 (2004), 60–71

[9] Zhivotnikov G. S., Pyt'ev Yu. P., Falomkin I. I., “On the giltering algorithm for images”, Pattern Recognition and Image Analysis, 3:1 (2005), 19–28

[10] Pytev Yu. P., Chulichkov A. I., Metody morfologicheskogo analiza izobrazhenii, Fizmatlit, M., 2010

[11] Yakimovsky A. Y., “Boundary and object detection in real world images”, J. Assoc. Comput. Machinery, 1976, no. 23, 599–618 | DOI | MR | Zbl

[12] Serra J., Image analysis and Mathematical Morphology, Academic Press, London, 1982 | MR | Zbl

[13] Ayache N., Faugeas Hyper O. D., “A new approach for the recognition and positioning of two-dimensional objects”, IEEE Trans. Pattern Anal. Mach. Intell., 8:1 (1986), 44–54 | DOI

[14] Davies E. R., “Locating objects from their point features using an optimized Hough-like accumulation technique”, Pattern recognition, 13:2 (1992), 113–121

[15] Vittikh V. A., Sergeev V. V., Soifer V. A., Obrabotka izobrazhenii v avtomatizirovannykh sistemakh nauchnykh issledovanii, Nauka, M., 1982

[16] Visilter Yu., Zheltov S., Stepanov A., “Object detection and recognition using events-based image analysis”, SPIE Processings, 2823, 1996, 184–195 | DOI

[17] Forsait A., Pons Dzh., Kompyuternoe zrenie. Sovremennyi podkhod, Vilyams, 2004

[18] Dougherty E. R., “The dual representation of gray-scale morphological filters”, IEEE Trans. PA MI, 1989

[19] Visilter Yu. V., “Design of morphological operators based on selective morphology” (Sun Jose, 2002), SPIE Proceedings, 4667, 215–226 | DOI

[20] Vizilter Yu. V., Zheltov S. Yu., “Sravnenie i lokalizatsiya fragmentov izobrazhenii s ispolzovaniem proektivnykh morfologii”, Vestnik kompyuternykh i informatsionnykh tekhnologii, 2008, no. 2, 14–22

[21] Vizilter Yu. V., Zheltov S. Yu., “Proektivnye morfologii i ikh primenenie v strukturnom analize tsifrovykh izobrazhenii”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 6, 113–128 | MR

[22] Vizilter Yu. V., Zheltov S. Yu., “Ispolzovanie proektivnykh morfologii v zadachakh obnaruzheniya i identifikatsii ob'ektov na izobrazheniyakh”, Teoriya i sistemy upravleniya, 2009, no. 2, 125–138

[23] Pytev Yu. P., Vozmozhnost kak alternativa veroyatnosti, Fizmatlit, M., 2013

[24] Vizilter Yu. V., “Strukturnaya filtratsiya tsifrovykh izobrazhenii s ispolzovaniem proektivnykh morfologii”, Vestnik kompyuternykh i informatsionnykh tekhnologii, 2008, no. 5, 18–22

[25] Vizilter Yu. V., “Obobschennaya proektivnaya morfologiya”, Kompyuternaya optika, 32:4 (2008)

[26] Kulichkov S. N., Chulichkov A. I., Demin D. A., Morfologicheskii analiz infrazvukovykh signalov v akustike, Izd-vo Novyi Akropol, M., 2010

[27] Tsybulskaya N. D., Chulichkov A. I., “Empiricheskoe postroenie formy izobrazheniya kak invarianta ego preobrazovanii, sokhranyayuschikh uporyadochenie yarkostei pikselei”, Zh. vychisl. matem. i matem. fiz., 52:9 (2012), 1735–1744 | Zbl

[28] Vizilter Yu. V., Zheltov S. Yu., Bondarenko A. V. i dr., Obrabotka i analiz izobrazhenii v zadachakh mashinnogo zreniya. Kurs lektsii i prakticheskikh zanyatii, Fizmatkniga, M., 2010

[29] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[30] Gantmakher F. R., Teoriya matrits, Gostekhizdat, M., 1954

[31] Pytev Yu. P., Zubyuk A. V., “Sluchainaya i nechetkaya morfologii (empiricheskoe vosstanovlenie modeli, identifikatsiya)”, Intel. Sist. i Kompyut. Nauki, Materialy IX Mezhd. Konf., ch. 2, v. 1, Izd. Mekh.-matem. f-ta MGU, M., 2006, 222–225

[32] Zubyuk A. V., “Sluchainaya morfologiya: algoritmy obucheniya i klassifikatsii”, Matem. metody raspozn. obrazov, Dokl. 15-i Vseross. konf. MMRO-15, 2011, M., 436–439