Iterative method for solving geometrically nonlinear inverse problems of structural element shaping under creep conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2091-2099 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An iterative method is proposed for solving geometrically nonlinear inverse problems of shaping structural elements under creep conditions. The method is implemented using a software package based on finite element analysis.
@article{ZVMMF_2013_53_12_a13,
     author = {K. S. Bormotin},
     title = {Iterative method for solving geometrically nonlinear inverse problems of structural element shaping under creep conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2091--2099},
     year = {2013},
     volume = {53},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a13/}
}
TY  - JOUR
AU  - K. S. Bormotin
TI  - Iterative method for solving geometrically nonlinear inverse problems of structural element shaping under creep conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 2091
EP  - 2099
VL  - 53
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a13/
LA  - ru
ID  - ZVMMF_2013_53_12_a13
ER  - 
%0 Journal Article
%A K. S. Bormotin
%T Iterative method for solving geometrically nonlinear inverse problems of structural element shaping under creep conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 2091-2099
%V 53
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a13/
%G ru
%F ZVMMF_2013_53_12_a13
K. S. Bormotin. Iterative method for solving geometrically nonlinear inverse problems of structural element shaping under creep conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2091-2099. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a13/

[1] Banschikova I. A., Gorev B. V., Sukhorukov I. V., “Dvumernye zadachi formoobrazovaniya sterzhnei v usloviyakh polzuchesti”, Prikl. mekhan. i tekhn. fiz., 43:3 (2002), 129–139

[2] Tsvelodub I. Yu., “Nekotorye geometricheski nelineinye zadachi formoizmeneniya neuprugikh plastin i pologikh obolochek”, Prikl. mekhan. i tekhn. fiz., 46:2 (2005), 151–157 | MR | Zbl

[3] Korobeinikov C. H., Nelineinoe deformirovanie tverdykh tel, Izd-vo SO RAN, Novosibirsk, 2000

[4] Hill R., “On uniqueness and stability in the theory of finite elastic strain”, J. Mech. Phys. Solids, 5:4 (1957), 229–241 ; Khill R., “O edinstvennosti i ustoichivosti v teorii konechnykh uprugikh deformatsii”, Mekhanika: Sb. perevodov, 1958, no. 6(52), 53–65 | DOI | MR | Zbl

[5] Bormotin K. S., “Variatsionnye metody resheniya obratnoi zadachi optimalnogo deformirovaniya v polzuchesti”, Informatika i sistemy upravleniya, 2011, no. 2(28), 106–116

[6] Vasidzu K., Variatsionnye metody v teorii uprugosti i plastichnosti, Mir, M., 1987

[7] Antipin A. S., “Metody resheniya variatsionnykh neravenstv so svyazannymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1291–1307 | MR | Zbl

[8] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[9] Antipin A. S., “Sedlovye gradientnye protsessy, upravlyaemye s pomoschyu obratnykh svyazei”, Avtomatika i telemekhanika, 1994, no. 3, 12–23 | MR | Zbl

[10] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[11] Zenkevich O., Metod konechnykh elementov v tekhnike, Mir, M., 1975

[12] Oleinikov A. I., Korobeinikov S. N., Gorev B. V., Bormotin K. S., “Matematicheskoe modelirovanie protsessov polzuchesti metallicheskikh izdelii iz materialov, imeyuschikh raznye svoistva pri rastyazhenii i szhatii”, Vychisl. metody i programmirovanie, 9 (2008), 346–365

[13] Annin B. D., Oleinikov A. I., Bormotin K. S., “Modelirovanie protsessov formoobrazovaniya panelei kryla samoleta SSJ-100”, Prikl. mekhan. i tekhn. fiz., 51:4 (2010), 155–165 | Zbl