Influence of dislocations on kink solutions of the double sine-Gordon equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2072-2081 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Dependences related to the formation of kinks and their interaction with local perturbations defined as a smooth function of coordinates multiplying the sine of complete argument in the double sine-Gordon equation are studied. It is shown that there are nonstationary kink solutions remaining within the perturbation domain. These solutions consist of two separate $2\pi$-kinks oscillating about the center of the perturbation. The interactions of these kinks with $4\pi$-kinks have a complicated character depending not only on the velocity but also on the phases of the kink pairs. The transmission, capture, and reflection of kinks are investigated. The computations were based on the quasispectral Fourier method and the fourth-order Runge–Kutta method.
@article{ZVMMF_2013_53_12_a11,
     author = {S. P. Popov},
     title = {Influence of dislocations on kink solutions of the double {sine-Gordon} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2072--2081},
     year = {2013},
     volume = {53},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a11/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - Influence of dislocations on kink solutions of the double sine-Gordon equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 2072
EP  - 2081
VL  - 53
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a11/
LA  - ru
ID  - ZVMMF_2013_53_12_a11
ER  - 
%0 Journal Article
%A S. P. Popov
%T Influence of dislocations on kink solutions of the double sine-Gordon equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 2072-2081
%V 53
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a11/
%G ru
%F ZVMMF_2013_53_12_a11
S. P. Popov. Influence of dislocations on kink solutions of the double sine-Gordon equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 2072-2081. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a11/

[1] Makhankov V. G., “Solitony i chislennyi eksperiment”, Fizika elementarnykh chastits i atomnogo yadra, 14:1 (1983), 123–180 | MR

[2] Belova T. I., Kudryavtsev A. E., “Solitony i ikh vzaimodeistviya v klassicheskoi teorii polya”, Uspekhi fiz. nauk, 167:4 (1997), 377–406 | DOI

[3] Gani V. A., Kudryavtsev A. E., “Kink-antikink interaction in the double sine-Gordon equation and the problem of resonance frequencies”, Phys. Rev. E, 60:3 (1999), 3305–3309 | DOI

[4] Goatham S. W., Mannering L. E., Hann R., Krusch S., “Dynamics of multi-kinks in the presence of wells and barriers”, Acta Physica Polonica B, 42:10 (2011), 2087–2106 | DOI

[5] Kalbermann G., “The sine-Gordon wobble”, J. Phys. A: Math. Gen., 37:48 (2004), 11603–11612 | DOI | MR | Zbl

[6] Kivshar Y. R., Malomed B. A., “Radiative and inelastic effects in dynamics of double sine-Gordon solitons”, Physics Letters A, 122:3 (1987), 245–248 | DOI | MR