$p$th-order approximation of the solution set of nonlinear equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 1951-1969 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a system of nonlinear equations, a formula is derived for the family of its approximate solutions of up to the pth order of smallness. A formula approximating an implicit function up to the third order of smallness is presented. Iterative methods converging with the $p$th order are constructed for solving systems of nonlinear equations. These results are extended to the degenerate case. Examples of applying the results are given.
@article{ZVMMF_2013_53_12_a1,
     author = {Yu. G. Evtushenko and A. A. Tret'yakov},
     title = {$p$th-order approximation of the solution set of nonlinear equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1951--1969},
     year = {2013},
     volume = {53},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a1/}
}
TY  - JOUR
AU  - Yu. G. Evtushenko
AU  - A. A. Tret'yakov
TI  - $p$th-order approximation of the solution set of nonlinear equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1951
EP  - 1969
VL  - 53
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a1/
LA  - ru
ID  - ZVMMF_2013_53_12_a1
ER  - 
%0 Journal Article
%A Yu. G. Evtushenko
%A A. A. Tret'yakov
%T $p$th-order approximation of the solution set of nonlinear equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1951-1969
%V 53
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a1/
%G ru
%F ZVMMF_2013_53_12_a1
Yu. G. Evtushenko; A. A. Tret'yakov. $p$th-order approximation of the solution set of nonlinear equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 12, pp. 1951-1969. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_12_a1/

[1] Bliss G. A., Lektsii po variatsionnomu ischisleniyu, Izd-vo inostr. lit., M., 1950

[2] Chebyshev P. L., Sobranie sochinenii, v. V, Izd-vo AN SSSR, M.–L., 1951, 7–25 | MR

[3] Tretyakov A. A., Nelineinye metody resheniya ekstremalnykh zadach, Diss. ... kand. fiz.-mat. nauk, M., 1983

[4] Tretyakov A. A., “Dve skhemy nelineinogo metoda optimizatsii v ekstremalnykh zadachakh”, Zh. vychisl. matem. i matem. fiz., 24:7 (1984), 986–992 | MR | Zbl

[5] Denisov A. A., Karmanov V. G., Tretyakov A. A., “Uskorennyi metod Nyutona dlya resheniya funktsionalnykh uravnenii”, Dokl. AN SSSR, 281:6 (1985), 1293–1297 | MR | Zbl

[6] Tretyakov A. A., “Elementarnoe dokazatelstvo klassicheskikh neobkhodimykh uslovii optimalnosti dlya zadachi matematicheskogo programmirovaniya s ogranicheniyami-neravenstvami”, Dokl. AN, 425:4 (2009), 459–461 | Zbl

[7] Tretyakov A. A., Optimizatsiya i upravlenie, Izd-vo MGU, M., 1985

[8] Belash K. N., Tretyakov A. A., “Metody resheniya vyrozhdennykh zadach”, Zh. vychisl. matem. i matem. fiz., 28:7 (1988), 1097–1102 | MR

[9] Nechepurenko M. I., “O metode Chebysheva dlya funktsionalnykh uravnenii”, Uspekhi matem. nauk, IX:2(60) (1954)

[10] Evtushenko Yu. G., Tretyakov A. A., “Elementarnoe dokazatelstvo varianta teoremy o kasatelnykh napravleniyakh i teoremy o neyavnykh funktsiyakh”, Dokl. AN, 442:2 (2012), 156–161 | Zbl

[11] Stewart G. W., Sun J., Matrix Perturbation Theory, Computer Science and Scientific Computing, Academic Press, New York, 1990 | MR | Zbl