On the structure of steady axisymmetric Navier-Stokes flows with a stream function having multiple local extrema in its definite-sign domains
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1869-1893 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new high-order accurate method and a corresponding computer program developed previously by the first and third authors for the numerical solution of the axisymmetric stationary Dirichlet boundary value problem for the Navier–Stokes equations in spherical layers at low Reynolds numbers were used to reliably study the structure of certain flows with a stream function in a meridional plane having multiple local extrema in its positive-sign domains. Regimes of rotation of the boundary spheres were detected that ensure this flow pattern: the inner sphere rotates at a constant angular velocity, while the outer sphere rotates at zenith-angle-dependent angular velocities. To describe the structure of these flows, the domain where the stream function is positive was partitioned into subdomains (circulation zones) by the separatrices of the saddle points of the stream function, which generate manifolds of unstable initial points of trajectories. Unexpected phenomena in the circulation of such flows were discovered. Examples were presented that illustrate the behavior of fluid particle trajectories. The computed trajectories were shown to be of high accuracy even on long time intervals.
@article{ZVMMF_2013_53_11_a9,
     author = {B. V. Pal'tsev and M. B. Solov'ev and I. I. Chechel'},
     title = {On the structure of steady axisymmetric {Navier-Stokes} flows with a stream function having multiple local extrema in its definite-sign domains},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1869--1893},
     year = {2013},
     volume = {53},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a9/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
AU  - M. B. Solov'ev
AU  - I. I. Chechel'
TI  - On the structure of steady axisymmetric Navier-Stokes flows with a stream function having multiple local extrema in its definite-sign domains
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1869
EP  - 1893
VL  - 53
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a9/
LA  - ru
ID  - ZVMMF_2013_53_11_a9
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%A M. B. Solov'ev
%A I. I. Chechel'
%T On the structure of steady axisymmetric Navier-Stokes flows with a stream function having multiple local extrema in its definite-sign domains
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1869-1893
%V 53
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a9/
%G ru
%F ZVMMF_2013_53_11_a9
B. V. Pal'tsev; M. B. Solov'ev; I. I. Chechel'. On the structure of steady axisymmetric Navier-Stokes flows with a stream function having multiple local extrema in its definite-sign domains. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1869-1893. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a9/

[1] Paltsev B. V., “Ob usloviyakh skhodimosti iteratsionnykh metodov s polnym rasschepleniem granichnykh uslovii dlya sistemy Stoksa v share i sharovom sloe”, Zh. vychisl. matem. i matem. fiz., 35:6 (1995), 935–963 | MR

[2] Paltsev B. V., “Optimizatsiya znachenii relaksatsionnykh parametrov odnoshagovogo varianta iteratsionnogo metoda s rasschepleniem granichnykh uslovii dlya sistemy Stoksa v sharovom sloe”, Vestn. RUDN, 8:2 (2001), 74–90

[3] Meller N. A., Paltsev B. V., Khlyupina E. G., “O konechno-elementnykh realizatsiyakh iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistem Stoksa i tipa Stoksa v sharovom sloe. Osesimmetrichnyi sluchai”, Zh. vychisl. matem. i matem. fiz., 39:1 (1999), 98–123 | MR | Zbl

[4] Paltsev B. V., Chechel I. I., “O konechno-elementnykh tipa lineinykh, vtorogo poryadka tochnosti vplot do polyusov, approksimatsiyakh operatorov Laplasa–Beltrami, gradienta i divergentsii na sfere v $\mathbb{R}^3$ v osesimmetrichnom sluchae”, Dokl. RAN, 395:3 (2004), 308–315 | MR

[5] Paltsev B. V., Chechel I. I., “Konechno-elementnye realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistem Stoksa i tipa Stoksa v sharovom sloe, obespechivayuschie 2-i poryadok tochnosti vplot do osi simmetrii”, Zh. vychisl. matem. i matem. fiz., 45:5 (2005), 846–889 | MR

[6] Paltsev B. V., Chechel I. I., “O skorosti skhodimosti i optimizatsii chislennogo metoda s rasschepleniem granichnykh uslovii dlya sistemy Stoksa v sharovom sloe v osesimmetrichnom sluchae. Modifikatsiya dlya tolstykh sloev”, Zh. vychisl. matem. i matem. fiz., 46:5 (2006), 858–886 | MR

[7] Paltsev B. V., Chechel I. I., “O metode 2-go poryadka tochnosti s rasschepleniem granichnykh uslovii resheniya statsionarnoi osesimmetrichnoi zadachi Nave–Stoksa v sharovykh sloyakh”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2232–2250 | MR

[8] Paltsev B. V., Stavtsev A. V., Chechel I. I., “Chislennoe issledovanie osnovnykh statsionarnykh sfericheskikh techenii Kuetta pri nebolshikh chislakh Reinoldsa”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 693–716 | MR

[9] Paltsev B. V., Solovev M. B., Chechel I. I., “Chislennoe issledovanie sfericheskikh techenii Kuetta pri nebolshikh chislakh Reinoldsa v sluchayakh nekotorykh, zavisyaschikh ot zenitnogo ugla vraschenii granichnykh sfer”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 1095–1133

[10] Odqvist F. K. G., “Über die Randwertaufgaben der Hydrodynamik Zäher Flüssigkeiten”, Math. Z., 32 (1930), 329–375 | DOI | MR

[11] Morrey S. V. Jr., “On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. I: Analyticity in the interior”, Amer. J. Math., 80 (1958), 198–218 | DOI | MR | Zbl

[12] Fujita H., “On the existence and regularity of the steady-state solutions of the Navier–Stokes equation”, J. Fac. Sci. Univ. Tokyo (1A), 9 (1961), 59–102 | MR | Zbl

[13] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[14] Galdi G. P., An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, v. 1, Second Edition, Springer, New York, 2011 | MR | Zbl

[15] Belyaev Yu. N., Yavorskaya I. M., “Techeniya vyazkoi zhidkosti vo vraschayuschikhsya sfericheskikh sloyakh i ikh ustoichivost”, Itogi nauki i tekhn. Ser. MZhG, 15, VINITI, M., 3–80

[16] Birkgof Dzh. D., Dinamicheskie sistemy, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999