@article{ZVMMF_2013_53_11_a6,
author = {A. N. Kudryavtsev and S. I. Trashkeev},
title = {Formalism of two potentials for the numerical solution of {Maxwell's} equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1823--1834},
year = {2013},
volume = {53},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a6/}
}
TY - JOUR AU - A. N. Kudryavtsev AU - S. I. Trashkeev TI - Formalism of two potentials for the numerical solution of Maxwell's equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1823 EP - 1834 VL - 53 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a6/ LA - ru ID - ZVMMF_2013_53_11_a6 ER -
%0 Journal Article %A A. N. Kudryavtsev %A S. I. Trashkeev %T Formalism of two potentials for the numerical solution of Maxwell's equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1823-1834 %V 53 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a6/ %G ru %F ZVMMF_2013_53_11_a6
A. N. Kudryavtsev; S. I. Trashkeev. Formalism of two potentials for the numerical solution of Maxwell's equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1823-1834. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a6/
[1] Taflove A., Hagness S. S., Computational electrodynamics. The finite-difference time-domain method, Artech House, Boston–New York, 2005 | MR
[2] Maksvell Dzh. K., Traktat ob elektrichestve i magnetizme, v. 1, 2, Nauka, M., 1989
[3] Baylis W. E., Electrodynamics: a modern geometric approach, Birkhauser, Boston, 2002 | MR | Zbl
[4] Strazhev V. I., Tomilchik L. M., Elektrodinamika s magnitnym zaryadom, Nauka i tekhnika, Minsk, 1975
[5] Polchinski J., “Monopoles, duality, and string theories”, Int. J. Mod. Phys. A, 19:S1 (2004), 145–156 | DOI | MR
[6] Novozhilov Yu. V., Yappa Yu. A., Elektrodinamika, Nauka, M., 1978 | Zbl
[7] Serdyukov A. I., Strazhev V. I., “O dualno simmetrichnoi formulirovke makroskopicheskoi elektrodinamiki”, Izv. vyssh. uchebn. zavedenii. Fizika, 1980, no. 6, 33–37 | MR
[8] Chawla B. R., Rao S. S., Unz H., “Potential equations for anisotropic inhomogeneous media”, Proc. IEEE, 55:3 (1967), 421–422 | DOI
[9] Ugarov V. A., Spetsialnaya teoriya otnositelnosti, Nauka, M., 1977 | MR
[10] Weiglhofer W. S., Georgieva N. K., “Vector potentials and scalarization for nonhomogeneous isotropic mediums”, Electromagnetics, 23 (2003), 387–398 | DOI
[11] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl
[12] Shang J. S., Fithen R. M., “A comparative study of characteristic-based algorithms for the Maxwell equations”, J. Comput. Phys., 125:2 (1996), 378–394 | DOI | MR | Zbl
[13] Bedsel Ch., Lengdon A., Fizika plazmy i chislennoe modelirovanie, Energoatomizdat, M., 1989
[14] Munz C.-D., Omnes R., Schneider R., Sonnendrucker E., et al., “Divergence correction techniques for Maxwell solvers based on a hyperbolic model”, J. Comput. Phys., 161:2 (2000), 484–511 | DOI | MR | Zbl
[15] Babii D. P., Godunov S. K., Zhukov V. T., Feodoritova O. B., “O raznostnykh approksimatsiyakh pereopredelennykh giperbolicheskikh uravnenii klassicheskoi matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 47:3 (2007), 445–459 | MR | Zbl
[16] Nedelec J. C., “Mixed finite elements in $\mathbb{R}^3$”, Numer. Math., 35:3 (1980), 315–341 | DOI | MR | Zbl
[17] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR
[18] Jiang G.-S., Shu C.-W., “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl
[19] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl
[20] Kudryavtsev A. N., Poplavskaya T. V., Khotyanovskii D. V., “Primenenie skhem vysokogo poryadka tochnosti pri modelirovanii nestatsionarnykh sverkhzvukovykh techenii”, Matem. modelirovanie, 19:7 (2007), 39–55 | MR
[21] Thompson R. J., “Improving round-off in Runge–Kutta computations with Gill's method”, Comm. of the ACM, 13:12 (1970), 739–740 | DOI | Zbl
[22] Vinogradova M. B., Rudenko O. V., Sukhorukov A. P., Teoriya voln, Nauka, M., 1990 | MR | Zbl