Formalism of two potentials for the numerical solution of Maxwell's equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1823-1834 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new formulation of Maxwell's equations based on the introduction of two vector and two scalar potentials is proposed. As a result, the electromagnetic field equations are written as a hyperbolic system that contains, in contrast to the original Maxwell system, only evolution equations and does not involve equations in the form of differential constraints. This makes the new equations especially convenient for the numerical simulation of electromagnetic processes. Specifically, they can be solved by applying powerful modern shock-capturing methods based on the approximation of spatial derivatives by upwind differences. The cases of an electromagnetic field in a vacuum and an inhomogeneous material are considered. Examples are given in which electromagnetic wave propagation is simulated by solving the formulated system of equations with the help of modern high-order accurate schemes.
@article{ZVMMF_2013_53_11_a6,
     author = {A. N. Kudryavtsev and S. I. Trashkeev},
     title = {Formalism of two potentials for the numerical solution of {Maxwell's} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1823--1834},
     year = {2013},
     volume = {53},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a6/}
}
TY  - JOUR
AU  - A. N. Kudryavtsev
AU  - S. I. Trashkeev
TI  - Formalism of two potentials for the numerical solution of Maxwell's equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1823
EP  - 1834
VL  - 53
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a6/
LA  - ru
ID  - ZVMMF_2013_53_11_a6
ER  - 
%0 Journal Article
%A A. N. Kudryavtsev
%A S. I. Trashkeev
%T Formalism of two potentials for the numerical solution of Maxwell's equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1823-1834
%V 53
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a6/
%G ru
%F ZVMMF_2013_53_11_a6
A. N. Kudryavtsev; S. I. Trashkeev. Formalism of two potentials for the numerical solution of Maxwell's equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1823-1834. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a6/

[1] Taflove A., Hagness S. S., Computational electrodynamics. The finite-difference time-domain method, Artech House, Boston–New York, 2005 | MR

[2] Maksvell Dzh. K., Traktat ob elektrichestve i magnetizme, v. 1, 2, Nauka, M., 1989

[3] Baylis W. E., Electrodynamics: a modern geometric approach, Birkhauser, Boston, 2002 | MR | Zbl

[4] Strazhev V. I., Tomilchik L. M., Elektrodinamika s magnitnym zaryadom, Nauka i tekhnika, Minsk, 1975

[5] Polchinski J., “Monopoles, duality, and string theories”, Int. J. Mod. Phys. A, 19:S1 (2004), 145–156 | DOI | MR

[6] Novozhilov Yu. V., Yappa Yu. A., Elektrodinamika, Nauka, M., 1978 | Zbl

[7] Serdyukov A. I., Strazhev V. I., “O dualno simmetrichnoi formulirovke makroskopicheskoi elektrodinamiki”, Izv. vyssh. uchebn. zavedenii. Fizika, 1980, no. 6, 33–37 | MR

[8] Chawla B. R., Rao S. S., Unz H., “Potential equations for anisotropic inhomogeneous media”, Proc. IEEE, 55:3 (1967), 421–422 | DOI

[9] Ugarov V. A., Spetsialnaya teoriya otnositelnosti, Nauka, M., 1977 | MR

[10] Weiglhofer W. S., Georgieva N. K., “Vector potentials and scalarization for nonhomogeneous isotropic mediums”, Electromagnetics, 23 (2003), 387–398 | DOI

[11] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl

[12] Shang J. S., Fithen R. M., “A comparative study of characteristic-based algorithms for the Maxwell equations”, J. Comput. Phys., 125:2 (1996), 378–394 | DOI | MR | Zbl

[13] Bedsel Ch., Lengdon A., Fizika plazmy i chislennoe modelirovanie, Energoatomizdat, M., 1989

[14] Munz C.-D., Omnes R., Schneider R., Sonnendrucker E., et al., “Divergence correction techniques for Maxwell solvers based on a hyperbolic model”, J. Comput. Phys., 161:2 (2000), 484–511 | DOI | MR | Zbl

[15] Babii D. P., Godunov S. K., Zhukov V. T., Feodoritova O. B., “O raznostnykh approksimatsiyakh pereopredelennykh giperbolicheskikh uravnenii klassicheskoi matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 47:3 (2007), 445–459 | MR | Zbl

[16] Nedelec J. C., “Mixed finite elements in $\mathbb{R}^3$”, Numer. Math., 35:3 (1980), 315–341 | DOI | MR | Zbl

[17] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[18] Jiang G.-S., Shu C.-W., “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl

[19] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[20] Kudryavtsev A. N., Poplavskaya T. V., Khotyanovskii D. V., “Primenenie skhem vysokogo poryadka tochnosti pri modelirovanii nestatsionarnykh sverkhzvukovykh techenii”, Matem. modelirovanie, 19:7 (2007), 39–55 | MR

[21] Thompson R. J., “Improving round-off in Runge–Kutta computations with Gill's method”, Comm. of the ACM, 13:12 (1970), 739–740 | DOI | Zbl

[22] Vinogradova M. B., Rudenko O. V., Sukhorukov A. P., Teoriya voln, Nauka, M., 1990 | MR | Zbl